出版社:世界图书出版公司北京公司
年代:2009
定价:55.0
本书阐述了数域领域的最新进展。它将作者早年撰写的《Cyclotomic Field》(GTM59)和《Cyclotomic Field Ⅱ》(GTM69)两书内容合并,并作少量的修正,增加了一个由K. Rubin所写的附录。
Notation
Introduction
CHAPTER1CharacterSums
1.CharacterSumsoverFiniteFields
2.StickelbergersTheorem
3.RelationsintheIdealClasses
4.JacobiSumsasHeckeCharacters
5.GaussSumsoverExtensionFields
6.ApplicationtotheFermatCurve
CHAPTER2StickelbergerIdealsandBernoulliDistribution
1.TheIndexoftheFirstStickelbergerIdeal
2.BernoulliNumbers
3.IntegralStickelbergerIdeals
4.GeneralCommentsonIndices
5.TheIndexforkEven
6.TheIndexforkOdd
7.TwistingsandStickelbergerIdeals
8.StickelbergerElementsasDistributions
9.UniversalDistributions
10.TheDavenport-HasseDistribution
Appendix.Distributions
CHAPTER3ComplexAnalyticClassNumberFormulas
1.GaussSumsonZ/raZ
2.PrimitiveL-series
3.DecompositionofL-series
4.The(±I)-eigenspaces
5.CyclotomicUnits
6.TheDedekindDeterminant
7.BoundsforClassNumbers
CHAPTER4Thep-adicL-function
1.MeasuresandPowerSeries
2.OperationsonMeasuresandPowerSeries
3.TheMellinTransformandp-adicL-functionAppendix.Thep-adicLogarithm
4.Thep-adicRegulator
5.TheFormalLeopoidtTransform
6.Thep-adicLeopoldtTransform
CHAPTER5IwasawaTheoryandIdealClassGroups
1.TheIwasawaAlgebra
2.WeierstrassPreparationTheorem
3.ModulesoverZp[[X]]
4.Zp-extensionsandIdealClassGroups
5.TheMaximalp-abelianp-ramifiedExtension
6.TheGaloisGroupasModuleovertheIwasawaAlgebra
CHAPTER6KummerTheoryoverCyclotomicZp-extensions
1.TheCyciotomicZp-extension
2.TheMaximalp-abelianp-ramifiedExtensionoftheCyclotomicZp-extension
3.CyclotomicUnitsasaUniversalDistribution
4.TheIwasawa-LeopoidtTheoremandtheKummer-VandiverConjecture
CHAPTER7IwasawaTheoryofLocalUnits
1.TheKummer-TakagiExponents
2.ProjectiveLimitoftheUnitGroups
3.ABasisforU(x)overΛ
4.TheCoates-WilesHomomorphism
5.TheClosureoftheCyclotomicUnits
CHAPTER8Lubin-TateTheory
1.Lubin-TateGroups
2.Formalp-adicMultiplication
3.ChangingthePrime
4.TheReciprocityLaw
5.TheKummerPairing
6.TheLogarithm
7.ApplicationoftheLogarithmtotheLocalSymbol
CHAPTER9ExplicitReciprocityLaws
1.StatementoftheReciprocityLaws
2.TheLogarithmicDerivative
3.ALocalPairingwiththeLogarithmicDerivative
4.TheMainLemmaforHighlyDivisiblexandα=xn
5.TheMainTheoremfortheSymboln
6.TheMainTheoremforDivisiblexandα=unit
7.EndoftheProofoftheMainTheorems
CHAPTER10MeasuresandIwasawaPowerSeries
1.IwasawaInvariantsforMeasures
2.ApplicationtotheBernoulliDistributions
3.ClassNumbersasProductsofBernoulliNumbersAppendixbyL.Washington:Probabilities
4.Divisibilityby!Primetop:WashingtonsTheorem
CHAPTER11TheFerrero-WashingtonTheorems
1.BasicLemmaandApplications
2.EquidistributionandNormalFamilies
3.AnApproximationLemma
4.ProofoftheBasicLemma
CHAPTER12MeasuresintheCompositeCase
1.MeasuresandPowerSeriesintheCompositeCase
2.TheAssociatedAnalyticFunctionontheFormalMultiplicativeGroup
3.ComputationofLp(l,X)intheCompositeCase
CHAPTER13DivisibilityofIdealClassNumbers
I.IwasawaInvariantsinZp-extensions
2.CMFields,RealSubfields,andRankInequalities
3.The/-primaryPartinanExtensionofDegreePrimetol
4.ARelationbetweenCertainInvariantsinaCyclicExtension
5.Examplesoflwasawa
6.ALemmaofKummer
CHAPTER14p-adicPreliminaries
I.Thep-adicGammaFunction
2.TheArtin-HassePowerSeries
3.AnalyticRepresentationofRootsofUnity
Appendix:BarskysExistenceProofforthep-adicGammaFunction
CHAPTER15TheGammaFunctionandGaussSums
1.TheBasicSpaces
2.TheFrobeniusEndomorphism
3.TheDworkTraceFormulaandGaussSums
4.EigenvaluesoftheFrobeniusEndomorphismandthep-adicGammaFunction
5.p-adicBanachSpaces
CHAPTER16GaussSumsandtheArtin-SchreierCurve
1.PowerSerieswithGrowthConditions
2.TheArtin-SchreierEquation
3.Washnitzer-MonskyCohomology
4.TheFrobeniusEndomorphism
CHAPTER17GaussSumsasDistributions
1.TheUniversalDistribution
2.TheGaussSumsasUniversalDistributions
3.TheL-functionats=0
4.Thep-adicPartialZetaFunction
APPENDIXBYKARLRUBIN
TheMainConjecture
Introduction
1.SettingandNotation
2.PropertiesofKolyvagins"EulerSystem"
3.AnApplicationoftheChebotarevTheorem
4.Example:TheIdealClassGroupofQ(μp)+
5.TheMainConjecture
6.ToolsfromIwasawaTheory
7.ProofofTheorem5.1
8.OtherFormulationsandConsequencesoftheMainConjecture
Bibliography
Index
KummersworkoncyclotomicfieldspavedthewayforthedevelopmentofalgebraicnumbertheoryingeneralbyDedekind,Weber,Hensel,Hilbert,Takagi,Artinandothers.However,thesuccessofthisgeneraltheoryhastendedtoobscurespecialfactsprovedbyKummeraboutcyclotomicfieldswhichliedeeperthanthegeneraltheory.Foralongperiodinthe20thcenturythisaspectofKummersworkseemstohavebeenlargelyforgotten,exceptforafewpapers,amongwhicharethosebyPollaczek[Po],Artin-Hasse[A-H]andVandiver.Inthemid1950s,thetheoryofcyclotomicfieldswastakenupagainbyIwasawaandLeopoldt.Iwasawaviewedcyclotomicfieldsasbeinganaloguesfornumberfieldsoftheconstantfieldextensionsofalgebraicgeometry,andwroteagreatsequenceofpapersinvestigatingtowersofcyclotomicfields,andmoregenerally,GaioisextensionsofnumberfieldswhoseGaloisgroupisisomorphictotheadditivegroupofp-adicintegers.
书籍详细信息 | |||
书名 | 分圆域Ⅰ和Ⅱ站内查询相似图书 | ||
9787510004773 如需购买下载《分圆域Ⅰ和Ⅱ》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 世界图书出版公司北京公司 |
版次 | 2版 | 印次 | 1 |
定价(元) | 55.0 | 语种 | 英文 |
尺寸 | 14 | 装帧 | 平装 |
页数 | 印数 | 1000 |
分圆域Ⅰ和Ⅱ是世界图书出版公司北京公司于2009.06出版的中图分类号为 O156.2 的主题关于 分圆数-代数数域-英文 的书籍。
(美) 罗摩克里希纳 (Ramakrishnan,D.) , (美) 瓦伦扎 (Valenza,R.J.) , 著
苏维宜, 著
(德) J·诺伊基希 (J·Neukirch) , (德) A·施密特 (A·Schmidt) , (德) K·温伯格 (K·Wingberg) , 著
(美) 科比利兹 (Koblitz,N.) , 著
(美) 塞瑞 (Serre,J.P.) , 著
(美) 华盛顿, 著
(美) F.Q.戈维亚 (F. Q. Gouvêa) , 著
苏维宜, 著
(德) 诺伊基希 (Jürgen,N.) , 编著