出版社:高等教育出版社
年代:2010
定价:129.95
脉冲耦合神经网络是由哺乳动物大脑皮层视觉区神经元传导特性的研究基础上提出来的,它在应用中表现出色,例如:脉冲耦合神经网络输出的二值脉冲是对原始图像的边缘、纹理、分割等信息的提取,这些信息往往是图像处理应用中必需的,对这些输出进行统计可得到对原始激励的旋转、尺度、平移不变性的特征,而传统的图像处理理论在应用中不具有这些优点。本书便是介绍脉冲耦合神经网络在图像滤波、图像分割、图像编码、图像增强、图像融合、特征提取和优化组合等方面的应用,书中包含了具体的图像处理算法、应用实例以及源代码,帮助读者建立脉冲耦合神经网络在图像处理中的应用。本书适合从事人工智能、模式识别、电子工程和计算机科学等相关领域的研究生及以上学历研究人员阅读。
Chapter 1 Pulse-Coupled Neural Networks
1.1 Linking Field Model
1.2 PCNN
1.3 Modified PCNN
1.3.1 Intersection Cortical Model
1.3.2 Spiking Cortical Model
1.3.3 Multi-channel PCNN
Summary
References
Chapter 2 Image Filtering
2.1 Traditional Filters
2.1.1 Mean Filte
2.1.2 Median Filte
2.1.3 Morphological Filter
2.1.4 Wiener Filter
2.2 Impulse Noise Filtering
2.2.1 Description of Algorithm Ⅰ
2.2.2 Description of Algorithm Ⅱ
2.2.3 Experimental Results and Analysis
2.3 Gaussian Noise Filtering
2.3.1 PCNNNI and Time Matrix
2.3.2 Description of Algorithm Ⅲ
2.3.3 Experimental Results and Analysis
Summary
References
Chapter 3 Image Segmentation
3.1 Traditional Methods and Evaluation Criteria
3.1.1 Image Segmentation Using Arithmetic Mean
3.1.2 Image Segmentation Using Entropy and Histogram
3.1.3 Image Segmentation Using Maximum Between-cluster Variance
3.1.4 Objective Evaluation Criteria
3.2 Image Segmentation Using PCNN and Entropy
3.3 Image Segmentation Using Simplified PCNN and GA
3.3.1 Simplified PCNN Model
3.3.2 Design of Application Scheme of GA
3.3.3 Flow of Algorithm
3.3.4 Experimental Results and Analysis
Summary
References
Chapter 4 Image Coding
4.1 Irregular Segmented Region Coding
4.1.1 Coding of Contours Using Chain Code
4.1.2 Basic Theories on Orthogonality
4.1.3 Orthonormalizing Process of Basis Functions
4.1.4 ISRC Coding and Decoding Framework
4.2 Irregular Segmented Region Coding Based on PCNN
4.2.1 Segmentation Method
4.2.2 Experimental Results and Analysis
Summary
References
Chapter 5 Image Enhancement
5.1 Image Enhancement
5.1.1 Image Enhancement in Spatial Domain
5.1.2 Image Enhancement in Frequency Domain
5.1.3 Histogram Equalization
5.2 PCNN Time Matrix
5.2.1 Human Visual Characteristics
5.2.2 PCNN and Human Visual Characteristics
5.2.3 PCNN Time Matrix
5.3 Modified PCNN Model
5.4 Image Enhancement Using PCNN Time Matrix
5.5 Color Image Enhancement Using PCNN
Summary
References
Chapter 6 Image Fusion
Chapter 7 Feature Extraction
Chapter 8 Combinatorial Optimization
Chapter 9 FPGA Implementation of PCNN Algorithm
Index
《脉冲耦合神经网络及应用(国内英文版)》内容简介:Applications of Pulse-Coupled Neural Networks explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields.
This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science.
马义德, 著
蔺想红, 王向文, 著
(瑞典) 林德布莱德 (Lindblad,T.) , (美) 凯泽 (Kinser,J.M.) , 著
(美) 托马斯·林德布拉德 (Thomas Lindblad) , (美) 詹森·金赛 (Jason M. Kinser) , 著
邹阿金, 张雨浓, 著
马义德等, 著
赵庶旭, 党建武, 张振海, 张华卫, 编
朱大奇, 史慧, 编著
董长虹, 编著