模形式基础教程
模形式基础教程封面图

模形式基础教程

(英) 戴梦德 (F.Diamond) , (美) 谢尔曼 (Shurman,J.) , 著

出版社:世界图书出版公司北京公司

年代:2007

定价:49.0

书籍简介:

本书是Springer《数学研究生丛书》第228卷,内容主要包括:椭圆曲线、复环面和代数曲,模曲线 、黎曼曲面和代数曲线等。

书籍目录:

Preface

Modular Forms, Elliptic Curves, and Modular Curves ...

1.1 First definitions and examples

1.2 Congruence subgroups

1.3 Complex tori

1.4 Complex tori as elliptic curves

1.5 Modular curves and moduli spaces

2 Modular Curves as Riemann Surfaces

2.1 Topology

2.2 Charts

2.3 Elliptic points

2.4 Cusps

2.5 Modular curves and Modularity

3 Dimension Formulas

3.1 The genus

3.2 Automorphic forms

3.3 Meromorphic differentials

3.4 Divisors and the Riemann-Roch Theorem

3.5 Dimension formulas for even k

3.6 Dimension formulas for odd k

3.7 More on elliptic points

3.8 More on cusps

3.9 More dimension formulas

4 Eisenstein Series

4.1 Eisenstein series for SL2(Z)

4.2 Eisenstein series for F(N) when k≥3

4.3 Dirichlet characters, Gauss sums, and eigenspaces

4.4 Gamma, zeta, and L-functions

4.5 Eisenstein series for the eigenspaces when k≥3

4.6 Eisenstein series of weight 2

4.7 Bernoulli numbers and the Hurwitz zeta function

4.8 Eisenstein series of weight 1

4.9 The Fourier transform and the Mellin transform

4.10 Nonholomorphic Eisenstein series

4.11 Modular forms via theta functions

5 Hecke Operators

5.1 The double coset operator

5.2 The and Tp operators

5.3 The (n> and Tn operators

5.4 The Petersson inner product

5.5 Adjoints of the Hecke Operators

5.6 Oldforms and Newforms

5.7 The Main Lemma

5.8 Eigenforms

5.9 The connection with L-functions

5.10 Functional equations.

5.11 Eisenstein series again

6 Jacobians and Abelian Varieties

6.1 Integration, homology, the Jacobian, and Modularity

6.2 Maps between Jacobians

6.3 Modular Jacobians and Hecke operators

6.4 Algebraic numbers and algebraic integers

6.5 Algebraic eigenvalues

6.6 Eigenforms, Abelian varieties, and Modularity

7 Modular Curves as Algebraic Curves

7.1 Elliptic curves as algebraic curves

7.2 Algebraic curves and their function fields

7.3 Divisors on curves

7.4 The Weil pairing algebraically

7.5 Function fields over C

7.6 Function fields over Q

7.7 Modular curves as algebraic curves and Modularity

7.8 Isogenies algebraically

7.9 Hecke operators algebraically

8 The Eichler-Shimura Relation and L-functions

8.1 Elliptic curves in arbitrary characteristic

8.2 Algebraic curves in arbitrary characteristic

8.3 Elliptic curves over Q and their reductions

……

9 Galois Representations

Hints and Answers to the Exercises

List of Symbols

Index

References

内容摘要:

《模形式基础教程》是《数学研究生丛书》第228卷,内容主要包括:椭圆曲线、复环面和代数曲,模曲线、黎曼曲面和代数曲线,Hecke算子和Athkin—Lehner理论,Hecke特征形式及它们的算术性质,模曲线的雅可比行列式和Hecke特征形式的阿贝尔簇,椭圆曲线、模曲线模P及Eichler—Shimura关系,椭圆曲线和Hecke特征形式的Galois表示。

书籍规格:

书籍详细信息
书名模形式基础教程站内查询相似图书
丛书名数学研究生丛书
9787506283007
如需购买下载《模形式基础教程》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位世界图书出版公司北京公司
版次1版印次1
定价(元)49.0语种英文
尺寸14装帧平装
页数印数 1000

书籍信息归属:

模形式基础教程是世界图书出版公司北京公司于2007.05出版的中图分类号为 O156 的主题关于 模型式-研究生-教材-英文 的书籍。