线性估值
线性估值封面图

线性估值

(美) 凯尔茨 (Kailath,T.) , (美) 塞德 (Sayed,A.H.) , (美) 哈斯比 (Hassibi,B.) , 著

出版社:西安交通大学出版社

年代:2008

定价:96.0

书籍简介:

本书全面介绍了在状态空间模型上的有限维线性系统的估值问题,涵盖了目前我们熟知的维纳滤波和卡尔曼滤波这一领域的许多方面。

作者介绍:

Thomas Kailath博士,美国斯坦福大学教授,世界著名的控制与系统科学专家,美国科学院和工程院院士,第三世界科学院院士和印度工程院院士,IEEE会士(Fellow)。他的研究兴趣涉及信息理论、通信系统、计算、控制、线性系统、统计信号处理、大规模集成电路等,也是名著《线性

书籍目录:

Preface

Symbols

1 OVERVIEW

1.1 The Asymptotic Observer

1.2 The Optimum Transient Observer

1.2.1 The Mean-Square-Error Criterion

1.2.2 Minimization via Completion of Squares

1.2.3 The Optimum Transient Observer

1.2.4 The Kalman Filter

1.3 Coming Attractions

1.3.1 Smoothed Estimators

1.3.2 Extensions to Time-Variant Models

1.3.3 Fast Algorithms for Time-Invariant Systems

1.3.4 Numerical Issues

1.3.5 Array Algorithms

1.3.6 Other Topics

1.4 The Innovations Process

1.4.1 Whiteness of the Innovations Process

1.4.2 Innovations Representations

1.4.3 Canonical Covariance Factorization

1.4.4 Exploiting State-Space Structure for Matrix Problems

1.5 Steady-State Behavior

1.5.1 Appropriate Solutions of the DARE

1.5.2 Wiener Filters

1.5.3 Convergence Results

1.6 Several Related Problems

1.6.1 Adaptive RL$ Fdtering

1.6.2 Linear Quadratic Control

1.6.3 Hoo Estimation

1.6.4 Hoo Adaptive Fdtering

1.6.5 Hoo Control

1.6.6 Linear Algebra and Matrix Theory

1.7 Complements

Problems

2 DETERMINISTIC LEAST-SQUARES PROBLEMS

2.1 The Deterministic Least-Squares Criterion

2.2 The Classical Solutions

2.2.1 The Normal Equations

2.2.2 Weighted Least-Squares Problems

2.2.3 Statistical Assumptions on the Noise

2.3 A Geometric Formulation: The Orthogonality Condition

2.3.1 The Projection Theorem in Inner Product Spaces

2.3.2 Geometric Insights

2.3.3 Projection Matrices

2.3.4 An Application: Order-Reeursive Least-Squares

2.4 Regularized Least-Squares Problems

2.5 An Array Algorithm: The OR Method

2.6 Updating Least-Squares Solutions: RLS Algorithms

2.6.1 The RLS Algorithm

2.6.2 An Array Algorithm for RLS

2.7 Downdating Least-Squares Solutions

2.8 Some Variations of Least-Squares Problems

2.8.1 The Total Least-Squares Criterion

2.8.2 Criteria with Bounds on Data Uncertainties

2.9 Complements

Problems

2.A On Systems of Linear Equations

3 STOCHASTIC LEAST-SQUARES PROBLEMS

3.1 The Problem of Stochastic Estimation

3.2 Linear Least-Mean-Squares Estimators

3.2.1 The Fundamental Equations

3.2.2 Stochastic Interpretation of Triangular Factorization

3.2.3 Singular Data Covariance Matrices

3.2.4 Nonzero-Mean Values and Centering

3.2.5 Estimators for Complex-Valued Random Variables

3.3 A Geometric Formulation

3.3.1 The Orthogonality Condition

3.3.2 Examples

3.4 Linear Models

3.4.1 Information Forms When Rx > 0 and Rv > 0

3.4.2 The Gauss-Markov Theorem

3.4.3 Combining Estimators

3.5 Equivalence to Deterministic Least-Squares

3.6 Complements

Problems

3.7 Least-Mean-Squares Estimation

3.8 Gaussian Random Variables

3.9 Optimal Estimation for Gaussian Variables

4 THE INNOVATIONS PROCESS

4.1 Estimation of Stochastic Processes

4.1.1 The Fixed Interval Smoothing Problem

4.1.2 The Causal Fdtering Problem

4.1.3 The Wiener-HopfTechnique

4.1.4 A Note on Terminology—— Vectors and Gramians

4.2 The Innovations Process

4.2.1 A Geometric Approach

4.2.2 An Algebraic Approach

4.2.3 The Modified Gram-Schmidt Procedure

4.2.4 Estimation Given the Innovations Process

4.2.5 The Filtering Problem via the Innovations Approach

4.2.6 Computational Issues

4.3 Innovations Approach to Deterministic Least-Squares Problems

4.4 The Exponentially Correlated Process

4.4.1 Triangular Factorization of Ry

4.4.2 Finding L-1 and the Innovations

4.4.3 Innovations via the Gram-Schmidt Procedures

4.5 Complements

Problems

4.6 Linear Spaces, Modules, and Gramians

5 STATE-SPACE MODELS

5.1 The Exponentially Correlated Process

5.1.1 Finite Interval Problems; Initial Conditions for Stationarity

5.1.2 Innovations from the Process Model

5.2 Going Beyond the Stationary Case

5.2.1 Stationary Processes

5.2.2 Nonstationary Processes

5.3 Higher-Order Processes and State-Space Models

5.3.1 Autoregressive Processes

5.3.2 Handling Initial Conditions

5.3.3 State-SpaceDescriptions

5.3.4 The Standard State-Space Model

5.3.5 Examples of Other State-Space Models

5.4 Wide-Seuse Markov Processes

5.4.1 Forwards Markovian Models

5.4.2 Backwards Markovian Models

5.4.3 Backwards Models from Forwards Models

5.4.4 Markovian Representations and the Standard Model

5.5 Complements

Problems

5.6 Some Global Formulas

6 INNOVATIONS FOR STATIONARY PROCESSES

6.1 Innovations via Spectral Factorization

6.1.1 Stationary Processes

6.1.2 Generating Functions and z-Spectra

6.2 Signals and Systems

6.2.1 The z-Transform

6.2.2 Linear Time-Invariant Systems

6.2.3 Causal, Anticausal, and Minimum-Phase Systems

6.3 Stationary Random Processes

6.3.1 Properties of the z-Spectrum

6.3.2 Linear Operations on Stationary Stochastic Processes

6.4 Canonical Spectral Factorization

6.5 Scalar Rational z-Spectra

6.6 Vector-Valued Stationary Processes

6.7 Complements

Problems

6.8 Continuous-Time Systems and Processes

7 WIENER THEORY FOR SCALAR PROCESSES

7.1 Continuous-Time Wiener Smoothing

7.1.1 The GeometricFormulation

7.1.2 Solution via Fourier Transforms

7.1.3 The Minimum Mean-Square Error

7.1.4 Filtering Signals out of Noisy Measurements

7.1.5 Comparison with the Ideal Filter

7.2 The Continuous-Time Wiener-Hopf Equation

7.3 Discrete-Trine Problems

7.3.1 The Discrete-Trine Wiener Smoother

7.3.2 The Discrete-Trine Wiener-Hopf Equation

7.4 The Discrete-Trine Wiener-Hopf Technique

7.5 Causal Parts Via Partial Fractions

7.6 Important Special Cases and Examples

7.6.1 Pure Prediction

7.6.2 Additive White Noise

……

8 RECURSIVE WIENER FILTERING

9 THE KALMAN FILTER

10 SMOOTHED ESTIMATORS

11 FAST ALGORITHMS

12 ARRAY ALGORITHMS

13 FAST ARRAY ALGORITHMS

14 ASYMPTOTIC BEHAVIOR

15 DUALITY AND EQUIVALENCE IN ESTIMATION AND CONTROL

16 CONTINUOUS-TIME STATE-SPACE ESTIMATION

17 A SCATTERING THEORY APPROACH

A USEFUL MATRIX RESULTS

B UNITARY AND J-UNITARY TRANSFORMATIONS

C SOME SYSTEM THEORY CONCEPTS

D LYAPUNOV EQUATIONS

E ALGEBRAIC RICCATI EQUATIONS

F DISPLACEMENT STRUCTURE

内容摘要:

本书主要介绍状态空间模型的有限维线性系统的估计问题,涵盖了目前我们熟知的维纳滤波和卡尔曼滤波这一领域的许多方面。本书的三个独特之处是:’第一。将几何学的观点渗透于分析中;第二。侧重于将许多算法用平方根/阵列的形式给出;第三。强调了在解决自适应滤波、估计和控制这些相关问题时的等价性和对偶性概念。全书由17章正文和7章附录构成。按内容可分为以下几个专题: ★概论和基础知识(1—5章) ★平稳过程估计(6书章) ★非平稳过程估计(9—10章) ★快速阵列算法(11—1 3章) ★连续时间估计(16章) ★高级专题(14,15,17章) 本书适合于控制、通信.数字信号处理、地球物理、计量经济学、统计学等领域的研究生和科研人员使用。

编辑推荐:

《线性估计(影印版)》适合于控制、通信.数字信号处理、地球物理、计量经济学、统计学等领域的研究生和科研人员使用。

书籍规格:

书籍详细信息
书名线性估值站内查询相似图书
9787560529493
《线性估值》pdf扫描版电子书已有网友提供资源下载链接,请点击下方按钮查看
出版地西安出版单位西安交通大学出版社
版次影印本印次1
定价(元)96.0语种英文
尺寸26装帧平装
页数印数 2000
全网搜索试读资源

书籍信息归属:

线性估值是西安交通大学出版社于2008.11出版的中图分类号为 O231.1 的主题关于 线性系统-高等学校-教材-英文 的书籍。