大规模多媒体信息管理与检索基础
大规模多媒体信息管理与检索基础封面图

大规模多媒体信息管理与检索基础

张智威, 著

出版社:清华大学出版社

年代:2011

定价:98.0

书籍简介:

海量的多媒体数据的检索和利用面临着两大类艰巨的技术挑战。首先,这一工程问题的研究在本质上是多领域、跨学科的,涉及信号处理、计算机视觉、数据库、机器学习、神经科学和认知心理学;其次,一个有效的解决方案必须能解决高维数据和网络规模数据的可扩展性问题。

作者介绍:

张智威,Dr. Edward Y. Chang was a professor at the Department of Electrical &Computer Engineering, University of California at Santa Barbara, before hejoined Google as a research director in 2006. Dr. Chang received his M.S.degree in Computer Science and Ph.D degree in Electrical Engineering,both from Stanford University.

书籍目录:

1 introduction - key subroutines of multimedia data management

1.1 overview

1.2 feature extraction

1.3 similarity

1.4 learning

1.5 multimodal fusion

1.6 indexing

1.7 scalability

1.8 concluding remarks

references

2 perceptual feature extraction

2.1 introduction

2.2 dmd algorithm

2.2.1 model-based pipeline

2.2.2 data-driven pipeline

2.3 experiments

2.3.1 dataset and setup

2.3.2 model-based vs. data-driven

2.3.3 dmd vs. individual models

2.3.4 regularization tuning

2.3.5 tough categories

2.4 related reading

2.5 concluding remarks

references

3 query concept learning

3.1 introduction

3.2 support vector machines and version space

3.3 active learning and batch sampling strategies

3.3.1 theoretical foundation

3.3.2 sampling strategies

3.4 concept-dependent learning

3.4.1 concept complexity

3.4.2 limitations of active learning

3.4.3 concept-dependent active learning algorithms

3.5 experiments and discussion

3.5.1 testbed and setup

3.5.2 active vs. passive learning

3.5.3 against traditional relevance feedback schemes

3.5.4 sampling method evaluation

3.5.5 concept-dependent learning

3.5.6 concept diversity evaluation

3.5.7 evaluation summary

3.6 related reading

3.6.1 machine learning

3.6.2 relevance feedback

3.7 relation to other chapters

3.8 concluding remarks

references

4 similarity

4.1 introduction

4.2 mining image feature set

4.2.1 image testbed setup

4.2.2 feature extraction

4.2.3 feature selection

4.3 discovering the dynamic partial distance function

4.3.1 minkowski metric and its limitations

4.3.2 dynamic partial distance function

4.3.3 psychological interpretation of dynamic partial distance function

4.4 empirical study

4.4.1 image retrieval

4.4.2 video shot-transition detection

4.4.3 near duplicated articles

4.4.4 weighted dpf vs. weighted euclidean

4.4.5 observations

4.5 related reading

4.6 concluding remarks

references

5 formulating distance functions

5.1 introduction

5.2 dfa algorithm

5.2.1 transformation model

5.2.2 distance metric learning

5.3 experimental evaluation

5.3.1 evaluation on contextual information

5.3.2 evaluation on effectiveness

5.3.3 observations

5.4 related reading

5.4.1 metric learning

5.4.2 kernel learning

5.5 concluding remarks

references

6 multimodal fusion

6.1 introduction

6.2 related reading

6.2.1 modality identification

6.2.2 modality fusion

6.3 independent modality analysis

6.3.1 pca

6.3.2 ica

6.3.3 img

6.4 super-kernel fusion

6.5 experiments

6.5.1 evaluation of modality analysis

6.5.2 evaluation of multimodal kernel fusion

6.5.3 observations

6.6 concluding remarks

references

7 fusing content and context with causality

7.1 introduction

7.2 related reading

7.2.1 photo annotation

7.2.2 probabilistic graphical models

7.3 multimodal metadata

7.3.1 contextual information

7.3.2 perceptual content

7.3.3 semantic ontology

7.4 influence diagrams

7.4.1 structure learning

7.4.2 causal strength

7.4.3 case study

7.4.4 dealing with missing attributes

7.5 experiments

7.5.1 experiment on learning structure

7.5.2 experiment on causal strength inference

7.5.3 experiment on semantic fusion

7.5.4 experiment on missing features

7.6 concluding remarks

references

8 combinational collaborative filtering, considering personalizafion

8.1 introduction

8.2 related reading

8.3 ccf: combinational collaborative filtering

8.3.1 c-u and c-d baseline models

8.3.2 ccf model

8.3.3 gibbs & em hybrid training

8.3.4 parallelization

8.3.5 inference

8.4 experiments

8.4.1 gibbs + em vs. em

8.4.2 the orkut dataset

8.4.3 runtime speedup

8.5 concluding remarks

references

9 imbalanced data learning

9.1 introduction

9.2 related reading

9.3 kernel boundary alignment

9.3.1 conformally transforming kernel k

9.3.2 modifying kernel matrix k

9.4 experimental results

9.4.1 vector-space evaluation

9.4.2 non-vector-space evaluation

9.5 concluding remarks

references

10 psvm: parallelizing support vector machines on distributed computers

10.1 introduction

10.2 interior point method with incomplete cholesky factorization

10.3 psvm algorithm

10.3.1 parallel icf

10.3.2 parallel ipm

10.3.3 computing parameter b and writing back

10.4 experiments

10.4.1 class-prediction accuracy

10.4.2 scalability

10.4.3 overheads

10.5 concluding remarks

references

11 approximate high-dimensional indexing with kernel

11.1 introduction

11.2 related reading

11.3 algorithm spheredex

11.3.1 create - building the index

11.3.2 search - querying the index

11.3.3 update - insertion and deletion

11.4 experiments

11.4.1 setup

11.4.2 performance with disk ios

11.4.3 choice of parameter g

11.4.4 impact of insertions

11.4.5 sequential vs. random

11.4.6 percentage of data processed

11.4.7 summary

11.5 concluding remarks

11.5.1 range queries

11.5.2 farthest neighbor queries

references

12 speeding up latent dirichlet allocation with parallelization and pipeline strategies

12.1 introduction

12.2 related reading

12.3 ad-lda: approximate distributed lda

12.3.1 parallel gibbs sampling and allreduce

12.3.2 mpi implementation of ad-lda

12.4 plda+

12.4.1 reduce bottleneck of ad-lda

12.4.2 framework of plda+

12.4.3 algorithm for pw processors

12.4.4 algorithm for pd processors

12.4.5 straggler handling

12.4.6 parameters and complexity

12.5 experimental results

12.5.1 datasets and experiment environment

12.5.2 perplexity

12.5.3 speedups and scalability

12.6 large-scale applications

12.6.1 mining social-network user latent behavior

12.6.2 question labeling (ql)

12.7 concluding remarks

references

内容摘要:

大规模多媒体信息管理与检索面临着两大类艰巨的技术挑战。首先,这一工程问题的研究在本质上是多领域、跨学科的,涉及信号处理、计算机视觉、数据库、机器学习、神经科学和认知心理学;其次,一个有效的解决方案必须能解决高维数据和网络规模数据的可扩展性问题。《大规模多媒体信息管理与检索基础(英):模拟人类感知数学方法》第一部分(第1~8章)着重介绍如何采用多领域、跨学科算法来解决特征提取及选择、知识表示、语义分析、距离函数的制定等问题;第二部分(第9~12章)对解决高维数据和网络规模数据的扩展性问题提出了有效的处理方法。此外,《大规模多媒体信息管理与检索基础(英):模拟人类感知数学方法》的附录还给出了作者开发的开源软件的下载地址。《大规模多媒体信息管理与检索基础(英):模拟人类感知数学方法》是作者在美国加州大学从事多年的教学科研及在google公司工作多年的基础上编写的。《大规模多媒体信息管理与检索基础(英):模拟人类感知数学方法》适合多媒体、计算机视觉、机器学习、大规模数据处理等领域的研发人员阅读,也可作为高等院校计算机专业本科生及研究生的教材或教学参考书。

书籍规格:

书籍详细信息
书名大规模多媒体信息管理与检索基础站内查询相似图书
9787302249764
如需购买下载《大规模多媒体信息管理与检索基础》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位清华大学出版社
版次1版印次1
定价(元)98.0语种英文
尺寸26 × 19装帧精装
页数印数 2000

书籍信息归属:

大规模多媒体信息管理与检索基础是清华大学出版社于2011.5出版的中图分类号为 TP37 ,G354.47 的主题关于 多媒体-信息管理-英文 ,多媒体检索系统-英文 的书籍。