数据挖掘导论
数据挖掘导论封面图

数据挖掘导论

(美) 谭庞宁, (美) 斯坦巴克 (Steinbach,M.) , (美) 库马尔 (Kumar,V.) , 著

出版社:机械工业出版社

年代:2010

定价:59.0

书籍简介:

本书全面介绍数据挖掘的理论和方法,着重介绍如何用数据挖掘知识解决各种实际问题,涉及学科领域众多,适用面广。全书涵盖5个主题:数据、分类、关联分析、聚类和异常检测。

书籍目录:

Preface

1 Introduction

1.1 What Is Data Mining?

1.2 Motivating Challenges

1.3 The Origins of Data Mining

1.4 Data Mining Tasks

1.5 Scope and Organization of the Book

1.6 Bibliographic Notes

1.7 Exercises

2 Data

2.1 Types of Data

2.1.1 Attributes and Measurement

2.1.2 Types of Data Sets

2.2 Data Quality

2.2.1 Measurement and Data Collection Issues

2.2.2 Issues Related to Applications

2.3 Data Preprocessing

2.3.1 Aggregation

2.3.2 Sampling

2.3.3 Dimensionality Reduction

2.3.4 Feature Subset Selection

2.3.5 Feature Creation

2.3.6 Discretization and Binarization

2.3.7 Variable Transformation

2.4 Measures of Similarity and Dissimilarity

2.4.1 Basics

2.4.2 Similarity and Dissimilarity between Simple Attributes.

2.4.3 Dissimilarities between Data Objects

2.4.4 Similarities between Data Objects

2.4.5 Examples of Proximity Measures

2.4.6 Issues in Proximity Calculation

2.4.7 Selecting the Right Proximity Measure

2.5 Bibliographic Notes

2.6 Exercises

3 Exploring Data

3.1 The Iris Data Set

3.2 Summary Statistics

3.2.1 Frequencies and the Mode

3.2.2 Percentiles

3.2.3 Measures of Location: Mean and Median

3.2.4 Measures of Spread: Range and Variance

3.2.5 Multivariate Summary Statistics

3.2.6 Other Ways to Summarize the Data

3.3 Visualization

3.3.1 Motivations for Visualization

3.3.2 General Concepts

3.3.3 Techniques

3.3.4 Visualizing Higher-Dimensional Data

3.3.5 Do's and Don'ts

3.4 OLAP and Multidimensional Data Analysis

3.4.1 Representing Iris Data as a Multidimensional Array

3.4.2 Multidimensional Data: The General Case

3.4.3 Analyzing Multidimensional Data

3.4.4 Final Comments on Multidimensional Data Analysis

3.5 Bibliographic Notes

3.6 Exercises

Classification:

4 Basic Concepts, Decision Trees, and Model Evaluation

4.1 Preliminaries

4.2 General Approach to Solving a Classification Problem

4.3 Decision Tree Induction

4.3.1 How a Decision Tree Works

4.3.2 How to Build a Decision Tree

4.3.3 Methods for Expressing Attribute Test Conditions .

4.3.4 Measures for Selecting the Best Split

4.3.5 Algorithm for Decision Tree Induction

4.3.6 An Example: Web Robot Detection

4.3.7 Characteristics of Decision Tree Induction

4.4 Model Overfitting

4.4.1 Overfitting Due to Presence of Noise

4.4.2 Overfitting Due to Lack of Representative Samples .

4.4.3 Overfitting and the Multiple Comparison Procedure

4.4.4 Estimation of Generalization Errors

4.4.5 Handling Overfitting in Decision Tree Induction . .

4.5 Evaluating the Performance of a Classifier

4.5.1 Holdout Method

4.5.2 Random Subsampling

4.5.3 Cross-Validation

4.5.4 Bootstrap

4.6 Methods for Comparing Classifiers

4.6.1 Estimating a Confidence Interval for Accuracy

4.6.2 Comparing the Performance of Two Models

4.6.3 Comparing the Performance of Two Classifiers

4.7 Bibliographic Notes

4.8 Exercises

5 Classification: Alternative Techniques

6 Association Analysis: Basic Concepts and Algorithms

内容摘要:

《数据挖掘导论(英文版)》全面介绍了数据挖掘的理论和方法,着重介绍如何用数据挖掘知识解决各种实际问题,涉及学科领域众多,适用面广。书中涵盖5个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都包含两章:前面一章讲述基本概念、代表性算法和评估技术,后面一章较深入地讨论高级概念和算法。目的是使读者在透彻地理解数据挖掘基础的同时,还能了解更多重要的高级主题。包含大量的图表、综合示例和丰富的习题。·不需要数据库背景。只需要很少的统计学或数学背景知识。·网上配套教辅资源丰富,包括PPT、习题解答、数据集等。

书籍规格:

书籍详细信息
书名数据挖掘导论站内查询相似图书
丛书名经典原版书库
9787111316701
如需购买下载《数据挖掘导论》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位机械工业出版社
版次1版印次1
定价(元)59.0语种英文
尺寸22 × 15装帧平装
页数 770 印数 3000

书籍信息归属:

数据挖掘导论是机械工业出版社于2010.9出版的中图分类号为 TP274 的主题关于 数据采集-英文 的书籍。