数据挖掘教程
数据挖掘教程封面图

数据挖掘教程

(美) 邓纳姆 (Dunhom,M.H.) , 著

出版社:清华大学出版社

年代:2005

定价:

书籍简介:

本书全面系统地介绍了各种数据挖掘的基本概念、方法和算法。全书的四部分构成:第一部分是导论,全面介绍了数据挖掘的背景信息、相关概念及使用的主要技术;第二部分是核心算法,系统深入地描述了用于分类、聚类和关联规则的常用算法;第三部分是高级课题,主要介绍Web挖掘、空间数据挖掘、时序数据和序列数据挖掘;第四部分是附录,介绍了目前市场上流行的一些数据挖掘工具产品。本书适宜作为计算机专业高年级本科生研究生教材,也可作为相关领域研究人员的参考书。

作者介绍:

Margaret H.Dunham 在俄亥俄州牛津市的迈阿密大学获得了数学学士和数学硕士学位,在Southern Methodist大学获得了计算机科学博士学位。Dunham教授的研究兴趣包括主存数据库、数据挖掘、时序数据库以及移动计算。她目前是IEEE Transactions on Knowledge and Data Engineering 杂志的副主编。她在数据库并发控制和恢复、数据库机、主存数据库以及移动计算等研究领域发表了大量学术论文。

书籍目录:

第1部分 导论

第1章 概述

1.1 基本数据挖掘任务

1.1.1 分类

1.1.2 回归

1.1.3 时间序列分析

1.1.4 预测

1.1.5 聚类

1.1.6 汇总

1.1.7 关联规则

1.1.8 序列发现

1.2 数据挖掘与数据库中的知识发现

1.2.1 数据挖掘的发展

1.3 数据挖掘问题

1.4 数据挖掘度量

1.5 数据挖掘的社会影响

1.6 从数据库观点看数据挖掘

1.7 数据挖掘的未来发展

1.8 练习

1.9 参考文献注释

第2章 相关概念

2.1 数据库/OLTP系统

2.2 模糊集和模糊逻辑

2.3 信息检索

2.4 决策支持系统

2.5 维数据建模

2.5.1 多维模式

2.5.2 索引

2.6 数据仓储

2.7 OLAP

2.8 Web搜索引擎

2.9 统计学

2.10 机器学习

2.11 模式匹配

2.12 小结

2.13 练习

2.14 参考文献注释

第3章 数据挖掘技术

3.1 引言

3.2 数据挖掘的统计方法

3.2.1 点估计

3.2.2 基于汇总的模型

3.2.3 贝叶斯定理

3.2.4 假设检验

3.2.5 回归和相关

3.3 相似性度量

3.4 决策树

3.5 神经网络

3.5.1 激励函数

3.6 遗传算法

3.7 练习

3.8 参考文献注释

第2部分 核心课题

第4章 分类

4.1 引言

4.1.1 分类中的问题

4.2 基于统计的算法

4.2.1 回归

4.2.2 贝叶斯分类

4.3 基于距离的算法

4.3.1 简单方法

4.3.2 K最近邻

4.4 基于决策树的算法

4.4.1 ID3

4.4.2 C4.5 和C5.0

4.4.3 CART

4.4.4 可伸缩的决策树技术

4.5 基于神经网络的算法

4.5.1 传播

4.5.2 神经网络有指导学习

4.5.3 径向基函数网络

4.5.4 感知器

4.6 基于规则的算法

4.6.1 从决策树生成规则

4.6.2 从神经网络生成规则

4.6.3 不用决策树或神经网络生成规则

4.7 组合技术

4.8 小结

4.9 练习

4.10 参考文献注释

第5章 聚类

5.1 引言

5.2 相似性和距离度量

5.3 异常点

5.4 层次算法

5.4.1 凝聚算法

5.4.2 分裂聚类

5.5 划分算法

5.5.1 最小生成树

5.5.2 平方误差聚类算法

5.5.3 K均值聚类

5.5.4 最近邻算法

5.5.5 PAM算法

5.5.6 结合能量算法

5.5.7 基于遗传算法的聚类

5.5.8 基于神经网络的聚类

5.6 大型数据库聚类

5.6.1 BIRCH

5.6.2 DBSCAN

5.6.3 CURE算法

5.7 对类别属性进行聚类

5.8 比较

5.9 练习

5.10 参考文献注释

第6章 关联规则

6.1 引言

6.2 大项目集

6.3 基本算法

6.3.1 Apriori算法

6.3.2 抽样算法

6.3.3 划分

6.4 并行和分布式算法

6.4.1 数据并行

6.4.2 任务并行

6.5 方法比较

6.6 增量规则

6.7 高级关联规则技术

6.7.1 泛化关联规则

6.7.2 多层关联规则

6.7.3 数量关联规则

6.7.4 使用多个最小支持度

6.7.5 相关规则

6.8 度量规则的质量

6.9 练习

6.10 参考文献注释

第3部分 高级课题

第7章 Web挖掘

7.1 引言

7.2 Web内容挖掘

7.2.1 爬虫

7.2.2 Harvest系统

7.2.3 虚拟Web视图

7.2.4 个性化

7.3 Web结构挖掘

7.3.1 PageRank

7.3.2 Clever

7.4 Web使用挖掘

7.4.1 预处理

7.4.2 数据结构

7.4.3 模式发现

7.4.4 模式分析

7.5 练习

7.6 参考文献注释

第8章 空间数据挖掘

8.1 引言

8.2 空间数据概述

8.2.1 空间查询

8.2.2 空间数据结构

8.2.3 主题地图

8.2.4 图像数据库

8.3 空间数据挖掘原语

8.4 一般化和特殊化

8.4.1 渐进求精

8.4.2 一般化

8.4.3 最近邻

8.4.4 STING

8.5 空间规则

8.5.1 空间关联规则

8.6 空间分类算法

8.6.1 对ID3的扩展

8.6.2 空间决策树

8.7 空间聚类算法

8.7.1 对CLARANS的扩展

8.7.2 SD(CLARANS)

8.7.3 DBCLASD

8.7.4 BANG

8.7.5 WaveCluster

8.7.6 近似

8.8 练习

8.9 参考文献注释

第9章 时序数据挖掘

9.1 引言

9.2 时序事件建模

9.3 时间序列

9.3.1 时间序列分析

9.3.2 趋势分析

9.3.3 变换

9.3.4 相似性

9.3.5 预测

9.4 模式检测

9.4.1 串匹配

9.5 时序序列

9.5.1 AprioriAll

9.5.2 SPADE

9.5.3 一般化

9.5.4 特征抽取

9.6 时序关联规则

9.6.1 事务间关联规则

9.6.2 情节规则

9.6.3 趋势依赖

9.6.4 序列关联规则

9.6.5 日历关联规则

9.7 练习

9.8 参考文献注释

附录A 数据挖掘产品

A.1 参考文献注释

附录B 参考文献

词汇表

内容摘要:

本书全面系统地介绍了各种数据挖掘的基本概念、方法和算法。全书由四部分构成:第一部分是导论,全面介绍了数据挖掘的背景信息、相关概念及其所使用的主要技术;第二部分是核心算法,系统深入地描述了用于分类、聚类和关联规则的常用算法;第三部分是高级课题,主要介绍了Web挖掘、空间数据挖掘、时序数据和序列数据挖掘;第四部分是附录,介绍了目前市场上流行的一些数据挖掘工具产品。书中对每种算法不仅进行了详尽的解释,还给出了算例及伪码。每章后的练习和参考文献为读者提供了进一步思考相关问题的线索。   本书适宜作为计算机专业高年级本科生、研究生教材,也可作为相关领域研究人员的参考书。

编辑推荐:

《数据挖掘教程》适宜作为计算机专业高年级本科生、研究生教材,也可作为相关领域研究人员的参考书。

书籍规格:

书籍详细信息
书名数据挖掘教程站内查询相似图书
丛书名世界著名计算机教材精选
9787302105336
《数据挖掘教程》pdf扫描版电子书已有网友提供资源下载链接,请点击下方按钮查看
出版地北京出版单位清华大学出版社
版次1版印次1
定价(元)语种简体中文
尺寸26装帧平装
页数 316 印数
全网搜索试读资源

书籍信息归属:

数据挖掘教程是清华大学出版社于2005.04出版的中图分类号为 TP274 的主题关于 数据采集-教材 的书籍。