出版社:世界图书出版公司北京公司
年代:2013
定价:49.0
本书是一部可读性很强的讲述随机积分和随机微分方程的入门教程。将基本理论和应用巧妙结合,非常适合学习过概率论知识的研究生,学习随机积分。运用现代方法,随机积分的定义是为了可料被积函数和局部鞅,紧接着是连续鞅的变分公式ITO变化。书中包括在布朗运动的描述、鞅的Hermite多项式、Feynman-Kac泛函和Schrodinger方程。这是第二版,讨论了Cameron-Martin-Giranov变换,并且在最后一章引入随机微分方程和一些学生用的练习。读者对象:数学专业、概论论、随机统计等学科的研。
PREFACE
PREFACE TO THE FIRST EDITION
ABBREVIATIONS AND SYMBOLS
1. PRELIMINARIES
1.1 Notations and Conventions
1.2 Measurability, L' Spaces and Monotone Class Theorems
1.3 Functions of Bounded Variation and Stieltjes Integrals
1.4 Probability Space, Random Variables, Filtration
1.5 Convergence, Conditioning
1.6 Stochastic Processes
1.7 Optional Times
1.8 Two Canonical Processes
1.9 Martingales
1.10 Local Martingales
1.11 Exercises
2. DEFINITION OF THE STOCHASTIC INTEGRAL
2.1 Introduction
2.2 Predictable Sets and Processes
2.3 Stochastic Intervals
2.4 Measure on the Predictable Sets
2.5 Definition of the Stochastic Integral
2.6 Extension to Local Integrators and Integrands
2.7 Substitution Formula
2.8 A Sufficient Condition for Extendability of λz
2.9 Exercises
3. EXTENSION OF THE PREDICTABLE INTEGRANDS
3.1 Introduction
3.2 Relationship between p, O, and Adapted Processes
3.3 Extension of the Integrands
3.4 A Historical Note
3.5 Exercises
4. QUADRATIC VARIATION PROCESS
4.1 Introduction
4.2 Definition and Characterization of Quadratic Variation
4.3 Properties of Quadratic Variation for an L2-martingale
4.4 Direct Definition of/JM
4.5 Decomposition of (M)2
4.6 A Limit Theorem
4.7 Exercises
5. THE ITO FORMULA
5.1 Introduction
5.2 One-dimensional Ito Formula
5.3 Mutual Variation Process
5.4 Multi-dimensional Ito Formula
5.5 Exercises
6. APPLICATIONS OF THE ITO FORMULA
6.1 Characterization of Brownian Motion
6.2 Exponential Processes
6.3 A Family of Martingales Generated by M
6.4 Feynman-Kac Functional and the Schrodinger Equation
6.5 Exercises
7. LOCAL TIME AND TANAKA'S FORMULA
7.1 Introduction
7.2 Local Time
7.3 Tanaka's Formula
7.4 Proof of Lemma 7.2
7.5 Exercises
8. REFLECTED BROWNIAN MOTIONS
8.1 Introduction
8.2 Brownian Motion Reflected at Zero
8.3 Analytical Theory of Z via the It5 Formula
8.4 Approximations in Storage Theory
8.5 Reflected Brownian Motions in a Wedge
8.6 Alternative Derivation of Equation (8.7)
8.7 Exercises
9. GENERALIZED ITO FORMULA, CHANGE OF TIME AND MEASURE
9.1 Introduction
9.2 Generalized Ito Formula
9.3 Change of Time
9.4 Change of Measure
9.5 Exercises
10. STOCHASTIC DIFFERENTIAL EQUATIONS
10.1 Introduction
10.2 Existence and Uniqueness for Lipschitz Coefficients
10.3 Strong Markov Property of the Solution
10.4 Strong and Weak Solutions
10.5 Examples
10.6 Exercises
REFERENCES
INDEX
《随机积分导论(第2版)》由(美)钟开莱著,是一部可读性很强的讲述随机积分和随机微分方程的入门教程。将基本理论和应用巧妙结合,非常适合学习过概率论知识的研究生,学习随机积分。运用现代方法,随机积分的定义是为了可料被积函数和局部鞅,紧接着是连续鞅的变分公式ITO变化。书中包括在布朗运动的描述、鞅的Hermite多项式、Feynman-Kac泛函和Schrodinger方程。这是第二版,讨论了Cameron-Martin-Giranov变换,并且在最后一章引入随机微分方程和一些学生用的练习。读者对象:数学专业、概论论、随机统计等学科的研。数学【作者简介】作者(美)钟开莱
书籍详细信息 | |||
书名 | 随机积分导论 : 第2版站内查询相似图书 | ||
9787510070259 如需购买下载《随机积分导论 : 第2版》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 世界图书出版公司北京公司 |
版次 | 影印本 | 印次 | 1 |
定价(元) | 49.0 | 语种 | 英文 |
尺寸 | 23 × 15 | 装帧 | 平装 |
页数 | 印数 |
随机积分导论 : 第2版是世界图书出版公司北京公司于2013.10出版的中图分类号为 O172.2 的主题关于 随机积分-英文 的书籍。
(美) 普若特 (Protter,P.E.) , 著
(美) 钟开莱 (K. L. Chung) , (美) R. J. 威廉姆斯 (R. J. Williams) , 著
闫理坦等, 编著
(瑞士) E·海尔 (E·Hairer) , (瑞士) C·卢比希 (C·Lubich,) , (瑞士) G·万纳 (G·Wanner) , 著
(美) 菲茨帕特里克 (Fitzpatrick,P.M.) , 著
(美) D.茨维林格 (Daniel Zwillinger) , 编
(美) 史密斯 (Smith,R.T.) , (美) 明顿 (Minton,R.B.) , 著
(美) 史密斯 (Smith,R.T.) , (美) 明顿 (Minton,R.B.) , 著
(美) F.琼斯 (Frank Jones) , 著