出版社:北京大学出版社
年代:2020
定价:48.0
本书结合了Python和机器学习两个热门领域,通过易于理解的知识讲解,帮助读者学习和掌握机器学习。全书共20章,分为5篇。其中第1篇为基础入门篇,主要讲述Python机器学习入门、设置机器学习的环境、机器学习基础和统计分析数学基础等内容;第2篇为数据预处理篇,主要讲述了产生和加载数据集、数据预处理等内容;第3篇为机器学习算法篇,主要讲述了回归分析、决策树分析、支持向量机、聚类分析、集成学习、神经网络学习、卷积网络学习和模型评价等内容;第4篇为机器学习应用篇,主要讲述了图像识别、语音识别、期刊新闻分类和图形压缩4个机器学习应用;第5篇为项目实战篇,主要讲述了社交好友分析、电商点击率预估等。本书适用于想了解传统机器学习算法的学生和从业者,想知道如何高效实现机器学习算法的程序员,以及想了解机器学习算法能如何进行应用的职员、经理等。
书籍详细信息 | |||
书名 | Python机器学习一本通站内查询相似图书 | ||
9787301313367 如需购买下载《Python机器学习一本通》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 北京大学出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 48.0 | 语种 | 简体中文 |
尺寸 | 26 × 19 | 装帧 | 平装 |
页数 | 印数 |
(印) 阿布舍克·维贾亚瓦吉亚 (Abhishek Vijayvargia) , 著
(美) 达西·哈龙 (Danish Haroon) , 著
(美) 塞巴斯蒂安·拉施卡 (Sebastian Raschka) , (美) 瓦希德·米尔贾利利 (Vahid Mirjalili) , 著
柯博文, 编著
赵涓涓, 强彦, 主编
(美) 塞巴斯蒂安·拉施卡 (Sebastian Raschka) , 著
(新加坡) 李伟梦, 著
翟锟, 胡锋, 周晓然, 编著
裔隽, 等著