轻质夹层板结构的声振耦合理论
轻质夹层板结构的声振耦合理论封面图

轻质夹层板结构的声振耦合理论

出版社:科学出版社

年代:2014

定价:150.0

书籍简介:

本书的内容主要包括:第一部分,双板空腔结构声振耦合特性理论与实验研究,主要针对高速机车、大型客机及高档居民楼上所采用的双层玻璃窗及双层壳体结构的声振耦合特性开展理论与实验研究;第二部分,外部流场作用下板壳结构声振耦合特性理论研究,重点考虑了飞机在巡航飞行状态时外部平均流对飞机喷气发动机产生的噪声从舱外传入舱内的物理过程;第三部分,正交加筋夹层板结构声振耦合特性理论研究,重点分析讨论了水面舰艇和潜水艇外壳结构经常使用的正交加筋夹层板结构的声辐射特性和结构传声特性;第四部分,填充吸声材料夹层板结构声振耦合特性研究及优化设计,主要理论研究了航空航天飞行器中常用到的层芯空腔填充多孔纤维吸声材料的加筋夹层板结构的声振耦合特性及其结构优化设计;第五部分,研究展望,结合国家重大项目发展需求,展望了复杂周期加筋板壳结构在外部声场及流场作用下的声振耦合特性未来的研究趋势,提出了值得进一步深入研究的几个问题。

书籍目录:

1 Transmission of Sound Through Finite Multiple-Panel Partition1.1 Simply Supported Finite Double-Panel Partitions1.1.1 Introduction1.1.2 Vibroacoustic Theoretical Modeling1.1.3 Mathematic Formulation and Solution1.1.4 Convergence Check for Numerical Results1.1.5 Model Validation1.1.6 Effects of Air Cavity Thickness1.1.7 Effects of Panel Dimensions1.1.8 Effects of Incident Elevation Angle and Azimuth Angle1.1.9 Conclusions1.2 Clamped Finite Double-Panel Partitions1.2.1 Introduction1.2.2 Modeling of the Vibroacoustic Coupled System1.2.3 Model Validation1.2.4 Finite Versus Infinite Double-Panel Partition1.2.5 Effects of Panel Thickness on STL1.2.6 Effects of Air Cavity Thickness on STL1.2.7 Effects of Incident Angles on STL1.2.8 Conclusions1.2.9 Sound Transmission Measurements1.2.10 Relationships Between Clamped and Simply Supported Boundary Conditions1.2.11 Conclusions1.3 Clamped Finite Triple-Panel Partitions1.3.1 Introduction1.3.2 Dynamic Structural Acoustic Formulation1.3.3 The Principle of Virtual Work1.3.4 Determination of Modal Coefficients1.3.5 Sound Transmission Loss1.3.6 Model Validation1.3.7 Physical Interpretation of STL Dips1.3.8 Comparison Among Single-, Double-, and Triple-Panel Partitions with Equivalent Total Mass1.3.9 Asymptotic Variation of STL Versus Frequency Curve from Finite to Infinite System1.3.10 Effects of Panel Thickness1.3.11 Effects of Air Cavity Depth1.3.12 Concluding RemarksAppendicesAppendix AAppendix BReferences

2 Vibroacoustics of Uniform Structures in Mean Flow2.1 Finite Single-Leaf Aeroelastic Plate2.1.1 Introduction2.1.2 Modeling of Aeroelastic Coupled System2.1.3 Effects of Mean Flow in Incident Field2.1.4 Effects of Mean Flow in Transmitted Field2.1.5 Effects of Incident Elevation Angle in the Presence of Mean Flow on Both Incident Side and Transmitted Side2.1.6 Conclusions2.2 Infinite Double-Leaf Aeroelastic Plates2.2.1 Introduction2.2.2 Statement of the Problem2.2.3 Formulation of Plate Dynamics2.2.4 Consideration of Fluid-Structure Coupling2.2.5 Definition of Sound Transmission Loss2.2.6 Characteristic Impedance of an Infinite Plate2.2.7 Physical Interpretation for the Appearance of STL Peaks and Dips2.2.8 Effects of Mach Number2.2.9 Effects of Elevation Angle2.2.10 Effects of Azimuth Angle2.2.11 Effects of Panel Curvature and Cabin Internal Pressurization2.2.12 Conclusions2.3 Double-Leaf Panel Filled with Porous Materials2.3.1 Introduction2.3.2 Problem Description2.3.3 Theoretical Model2.3.4 Validation of Theoretical Model2.3.5 Influence of Porous Material and the Faceplates2.3.6 Influence of Porous Material Layer Thickness2.3.7 Influence of External Mean Flow2.3.8 Influence of Incident Sound Elevation Angle2.3.9 Influence of Sound Incident Azimuth Angle2.3.10 ConclusionAppendixMass-Air-Mass ResonanceStanding-Wave AttenuationStanding-Wave ResonanceCoincidence ResonanceReferences

3 Vibroacoustics of Stiffened Structures in Mean Flow3.1 Noise Radiation from Orthogonally Rib-Stiffened Plates3.1.1 Introduction3.1.2 Theoretical Formulation3.1.3 Effect of Mach Number3.1.4 Effect of Incidence Angle3.1.5 Effect of Periodic Spacings3.1.6 Concluding Remarks3.2 Transmission Loss of Orthogonally Rib-Stiffened Plates3.2.1 Introduction3.2.2 Theoretical Formulation3.2.3 Model Validation3.2.4 Effects of Mach Number of Mean Flow3.2.5 Effects of Rib-Stiffener Spacings3.2.6 Effects of Rib-Stiffener Thickness and Height3.2.7 Effects of Elevation and Azimuth Angles of Incident Sound3.2.8 ConclusionsAppendicesAppendix AAppendix BReferences

4 Sound Transmission Across Sandwich Structures with Corrugated Cores4.1 Introduction4.2 Development of Theoretical Model4.3 Effects of Core Topology on Sound Transmission Across the Sandwich Structure4.4 Physical Interpretation for the Existence of Peaks and Dips on STL Curves4.5 Optimal Design for Combined Sound Insulation and Structural Load Capacity4.6 ConclusionReferences

5 Sound Radiation, Transmission of Orthogonally Rib-Stiffened Sandwich Structures5.1 Sound Radiation of Sandwich Structures5.1.1 Introduction5.1.2 Theoretical Modeling of Structural Dynamic Responses5.1.3 Solutions5.1.4 Far-Field Radiated Sound Pressure5.1.5 Validation of Theoretical Modeling5.1.6 Influences of Inertial Effects Arising from Rib-Stiffener Mass5.1.7 Influence of Excitation Position5.1.8 Influence of Rib-Stiffener Spacings5.1.9 Conclusions5.2 Sound Transmission Through Sandwich Structures5.2.1 Introduction5.2.2 Analytic Formulation of Panel Vibration and Sound Transmission5.2.3 The Acoustic Pressure and Continuity Condition5.2.4 Solution of the Formulations with the Virtual Work Principle5.2.5 Virtual Work of Panel Elements5.2.6 Virtual Work of x-Wise Rib-Stiffeners5.2.7 Virtual Work of y-Wise Rib-Stiffeners5.2.8 Combination of Equations5.2.9 Definition of Sound Transmission Loss5.2.10 Convergence Check for Space-Harmonic Series Solution .5.2.11 Validation of the Analytic Model5.2.12 Influence of Sound Incident Angles5.2.13 Influence of Inertial Effects Arising from Rib-Stiffener Mass5.2.14 Influence of Rib-Stiffener Spacings5.2.15 Influence of Airborne and Structure-Borne Paths5.2.16 ConclusionsAppendicesAppendix AAppendix BReferences

6 Sound Propagation in Rib-Stiffened Sandwich Structures with Cavity Absorption6.1 Sound Radiation of Absorptive Sandwich Structures6.1.1 Introduction6.1.2 Structural Dynamic Responses to Time-Harmonic Point Force6.1.3 The Acoustic Pressure and Fluid-Structure Coupling6.1.4 Far-Field Sound-Radiated Pressure6.1.5 Convergence Check for Numerical Solution6.1.6 Validation of Theoretical Modeling6.1.7 Influence of Air-Structure Coupling Effect6.1.8 Influence of Fibrous Sound Absorptive Filling Material6.1.9 Conclusions6.2 Sound Transmission Through Absorptive Sandwich Structure6.2.1 Introduction6.2.2 Analytic Formulation of Panel Vibration and Sound Transmission6.2.3 Application of the Periodicity of Structures6.2.4 Solution by Employing the Virtual Work Principle6.2.5 Model Validation6.2.6 Effects of Fluid-Structure Coupling on Sound Transmission6.2.7 Sound Transmission Loss Combined with Bending Stiffness and Structure Mass: Optimal Design of Sandwich6.2.8 ConclusionsAppendicesAppendix AAppendix BAppendix CReferences

内容摘要:

《轻质夹层板结构的声振耦合理论(英文版)》的内容主要包括:第一部分,双板空腔结构声振耦合特性理论与实验研究,主要针对高速机车、大型客机及高档居民楼上所采用的双层玻璃窗及双层壳体结构的声振耦合特性开展理论与实验研究;第二部分,外部流场作用下板壳结构声振耦合特性理论研究,重点考虑了飞机在巡航飞行状态时外部平均流对飞机喷气发动机产生的噪声从舱外传入舱内的物理过程;第三部分,正交加筋夹层板结构声振耦合特性理论研究,重点分析讨论了水面舰艇和潜水艇外壳结构经常使用的正交加筋夹层板结构的声辐射特性和结构传声特性;第四部分,填充吸声材料夹层板结构声振耦合特性研究及优化设计,主要理论研究了航空航天飞行器中常用到的层芯空腔填充多孔纤维吸声材料的加筋夹层板结构的声振耦合特性及其结构优化设计;第五部分,研究展望,结合国家重大项目发展需求,展望了复杂周期加筋板壳结构在外部声场及流场作用下的声振耦合特性未来的研究趋势,提出了值得进一步深入研究的几个问题。

书籍规格:

书籍详细信息
书名轻质夹层板结构的声振耦合理论站内查询相似图书
9787030413222
如需购买下载《轻质夹层板结构的声振耦合理论》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位科学出版社
版次1版印次1
定价(元)150.0语种英文
尺寸24 × 17装帧精装
页数印数

书籍信息归属:

轻质夹层板结构的声振耦合理论是科学出版社于2014.7出版的中图分类号为 TU330.4 的主题关于 轻质板材-壳体(结构)-结构振动-研究-英文 ,轻质板材-壳体(结构)-声学-研究-英文 的书籍。