出版社:世界图书出版公司北京公司
年代:2009
定价:35.0
本书与作者的另一本书《Introduction to Analytic Number Theory》是作者在加利福尼亚理工学院任教25年的结晶,它们共同构成了公认的数论教程优秀教材。全书的论述非常明晰易懂,有一套独特的处理问题和定理证明方法。书中主要介绍了椭圆函数和模函数及其在数论方面的应用狄利克莱级数的波尔等价理论等。
Chapter1
Ellipticfunctions
1.1Introduction
1.2Doublyperiodicfunctions
1.3Fundamentalpairsofperiods
1.4Ellipticfunctions
1.5Constructionofellipticfunctions
1.6TheWeierstrassfunction
1.7TheLaurentexpansionofneartheorigin
1.8Differentialequationsatisfiedby
1.9TheEisensteinseriesandtheinvariantsand
1.10Thenumbersel,e2,e3
1.11Thediscriminant
1.12KleinsmodularfunctionJ()
1.13InvarianceofJunderunimodulartransformations
1.14TheFourierexpansionsofg2()andg3()
1.15TheFourierexpansionsofA()andJ()ExercisesforChapter1
Chapter2TheModulargroupandmodularfunctions
2.1M6biustransformations
2.2ThemodulargroupF
2.3Fundamentalregions
2.4Modularfunctions
2.5SpecialvaluesofJ
2.6ModularfunctionsasrationalfunctionsofJ
2.7MappingpropertiesofJ
2.8ApplicationtotheinversionproblemforEisensteinseries
2.9ApplicationtoPicardstheoremExercisesforChapter2
Chapter3TheDedekindetafunction
3.1Introduction
3.2SiegersproofofTheorem3.1
3.3InfiniteproductrepresentationforA(r)
3.4Thegeneralfunctionalequationforq(r)
3.5Isekistransformationformula
3.6DeductionofDedekindsfunctionalequationfromIsekisformula
3.7PropertiesofDedekindsums
3.8ThereciprocitylawforDedekindsums
3.9CongruencepropertiesofDedekindsums
3.10TheEisensteinseriesG2(z)ExercisesforChapter
Chapter4Conyruencesforthecoefficientsofthemodularfunction
4.1Introduction
4.2ThesubgroupFo(q)
4.3FundamentalregionofFo(p)
4.4FunctionsautomorphicunderthesubgroupFo(p)
4.5ConstructionoffunctionsbelongingtoFo(p)
4.6Thebehaviorof∫punderthegeneratorsofF
4.7Thefunctionφ(τ)=A(qτ)/A(τ)
4.8Theunivalentfunctionφ(τ)
4.9Invarianceofφ(ι)undertransformationsofFo(q)
4.10Thefunctionjpexpressedasapolynomialin
ExercisesforChapter4
Chapter5
Rademachersseriesforthepartitionfunction
5.1Introduction
5.2Theplanoftheproof
5.3DedekindsfunctionalequationexpressedintermsofF
5.4Fareyfractions
5.5Fordcircles
5.6Rademacherspathofintegration
5.7Rademachersconvergentseriesforp(n)
ExercisesforChapter5
Chapter6
Modularformswithmultiplicativecoefficients
6.1Introduction
6.2Modularformsofweightk
6.3Theweightformulaforzerosofanentiremodularform
6.4RepresentationofentireformsintermsofG4andG6
6.5ThelinearspaceMkandthesubspaceMk.o
6.6Classificationofentireformsintermsoftheirzeros
6.7TheHeckeoperatorsTn
6.8Transformationsofordern
6.9BehaviorofTnfunderthemodulargroup
6.10MultiplicativepropertyofHeckeoperators
6.11EigenfunctionsofHeckeoperators
6.12Propertiesofsimultaneouseigenforms
6.13Examplesofnormalizedsimultaneouseigenforms
6.14RemarksonexistenceofsimultaneouseigenformsinM2k,o
6.15EstimatesfortheFouriercoefficientsofentireforms
6.16ModularformsandDirichletseries
ExercisesforChapter6
Chapter7
Kroneckerstheoremwithapplications
7.1Approximatingrealnumbersbyrationalnumbers
7.2Dirichletsapproximationtheorem
7.3Liouvillesapproximationtheorem
7.4Kroneckersapproximationtheorem:theone-dimensionalcase
7.5ExtensionofKroneckerstheoremtosimultaneousapproximation
7.6ApplicationstotheRiemannzetafunction
7.7Applicationstoperiodicfunctions
ExercisesforChapter7
Chapter8
GeneralDirichletseriesandBohrsequivalencetheorem
8.1Introduction
8.2Thehalf-planeofconvergenceofgeneralDirichletseries
8.3BasesforthesequenceofexponentsofaDirichletseries
8.4Bohrmatrices
8.5TheBohrfunctionassociatedwithaDirichletseries
8.6ThesetofvaluestakenbyaDirichletseriesf(s)onalineσ=σ0
8.7EquivalenceofgeneralDirichletseries
8.8EquivalenceofordinaryDirichletseries
8.9EqualityofthesetsUι(σo)andUg(σo)forequivalentDirichletseries
8.10ThesetofvaluestakenbyaDirichletseriesinaneighborhoodofthelineσ=σ0
8.11Bohrsequivalencetheorem
8.12ProofofTheorem8.15
8.13ExamplesofequivalentDirichletseries.ApplicationsofBohrstheoremtoL-series
8.14ApplicationsofBohrstheoremtotheRiemannzetafunctionSupplementtoChapter3
Bibliography
Indexofspecialsymbols
Index
Thisisthesecondvolumeofa2-volumetextbook*whichevolvedfromacourse(Mathematics160)offeredattheCaliforniaInstituteofTechnologyduringthelast25years. Thesecondvolumepresupposesabackgroundinnumbertheorycomparabletothatprovidedinthefirstvolume,togetherwithaknowledgeofthebasicconceptsofcomplexanalysis.
书籍详细信息 | |||
书名 | 数论中的模函数和狄利克莱级数站内查询相似图书 | ||
9787510004407 如需购买下载《数论中的模函数和狄利克莱级数》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 世界图书出版公司北京公司 |
版次 | 1版 | 印次 | 1 |
定价(元) | 35.0 | 语种 | 英文 |
尺寸 | 14 | 装帧 | 平装 |
页数 | 印数 | 1000 |
数论中的模函数和狄利克莱级数是世界图书出版公司北京公司于2009.04出版的中图分类号为 O174.1 ,O156.4 的主题关于 模函数-高等学校-教材-英文 ,狄利克雷级数-高等学校-教材-英文 的书籍。