出版社:高等教育出版社
年代:2009
定价:35.6
本书是天元基金影印数学丛书之一,是作者在巴黎第七大学讲授分析数十年的结晶,其目的是阐明分析是什么,它是如何发展的。本书非常巧妙地将严格的数学与教学实际、历史背景结合在一起,对主要结论常常给出各种可能的探索途径,以使读者理解基本概念、方法和推演过程。作者在本书中较早地引入了一些较深的内容,如在第一卷中介绍了拓扑空间的概念,在第二卷中介绍了Lebesgue理论的基本定理和Weierstrass椭圆函数的构造。本书第一卷的内容包括集合与函数,离散变量的收敛性,连续变量的收敛性,幂函数、指数函数与三角函数;第二卷的内容包括Fourier级数和Fourier积分以及可以通过Fourier级数解释的Weierstrass的解析函数理论。
V - Differential and Integral Calculus
1. The Riemann Integral
1 - Upper and lower integrals of a bounded function
2 - Elementary properties of integrals
3 - Riemann sums. The integral notation
4 - Uniform limits of integrable functions
5 - Application to Fourier series and to power series
2. Integrability Conditions
6 - The Borel-Lebesgue Theorem
7 - Integrability of regulated or continuous functions
8 - Uniform continuity and its consequences
9 - Differentiation and integration under the f sign
10 - Semicontinuous functions
11 - Integration of semicontinuous functions
3. The "Fundamental Theorem" (FT)
12 - The fundamental theorem of the differential and integral calculus
13 - Extension of the fundamental theorem to regulated functions
14 - Convex functions; Holder and Minkowski inequalities
4. Integration by parts
15 - Integration by parts
16 - The square wave Fourier series
17- Wallis formula
5. Taylors Formula
18 - Taylors Formula
6. The change of variable formula
19 - Change of variable in an integral
20 - Integration of rational fractions
7. Generalised Riemann integrals
21 - Convergent integrals: examples and definitions
22 - Absolutely convergent integrals
23 - Passage to the limit under the fsign
24 - Series and integrals
25 - Differentiation under the f sign
26 - Integration under the f sign
8. Approximation Theorems
27 - How to make C a function which is not
28 - Approximation by polynomials
29 - Functions having given derivatives at a point
9. Radon measures in R or C
30 - Radon measures on a compact set
31 - Measures on a locally compact set
32 - The Stieltjes construction
33 - Application to double integrals
10. Schwartz distributions
34 - Definition and examples
35 - Derivatives of a distribution
Appendix to Chapter V - Introduction to the Lebesgue Theory
VI - Asymptotic Analysis
1. Truncated expansions
1 - Comparison relations
2 - Rules of calculation
3 - Truncated expansions
4 - Truncated expansion of a quotient
5 - Gauss convergence criterion
6 - The hypergeometric series
7 - Asymptotic study of the equation xex = t
8 - Asymptotics of the roots of sin x log x = 1
9 - Keplers equation
10 - Asymptotics of the Bessel functions
2. Summation formulae
11 - Cavalieri and the sums 1k + 2k + ... + nk
12 - Jakob Bernoulli
13 - The power series for cot z
14 - Euler and the power series for arctan x
15 - Euler, Maclaurin and their summation formula
16 - The Euler-Maclaurin formula with remainder
17 - Calculating an integral by the trapezoidal rule
18 - The sum 1 + 1/2 ... + l/n, the infinite product for the F function, and Stirlings formula
19 - Analytic continuation of the zeta function
VII - Harmonic Analysis and Holomcrphic Functions
1 - Cauchys integral formula for a circle
1. Analysis on the unit circle
2 - Functions and measures on the unit circle
3 - Fourier coefficients
4 - Convolution product on
5 - Dirac sequences in T
2. Elementary theorems on Fourier series
6 - Absolutely convergent Fourier series
7 - Hilbertian calculations
8 - The Parseval-Bessel equality
9 - Fourier series of differentiable functions
10 - Distributions on
3. Dirichlets method
11 - Dirichlets theorem
12 - Fejers theorem
13 - Uniformly convergent Fourier series
4. Analytic and holomorphic functions
14 - Analyticity of the holomorphic functions
15 - The maximum principle
16 - Functions analytic in an annulus. Singular points. Meromorphic functions
17 - Periodic holomorphic functions
18 - The theorems of Liouville and dAlembert-Gauss
19 - Limits of holomorphic functions
20 - Infinite products of holomorphic functions
5. Harmonic functions and Fourier series
21 - Analytic functions defined by a Cauchy integral
22 - Poissons function
23 - Applications to Fourier series
24 - Harmonic functions
25 - Limits of harmonic functions
26 - The Dirichlet problem for a disc
6. From Fourier series to integrals
27 - The Poisson summation formula
28 - Jacobis theta function
29 - Fundamental formulae for the Fourier transform
30 - Extensions of the inversion formula
31 - The Fourier transform and differentiation
32 - Tempered distributions
Postface. Science, technology, arms
Index
Table of Contents of Volume I
《天元基金影印数学丛书:分析2(影印版)》是作者在巴黎第七大学讲授分析课程数十年的结晶,其目的是阐明分析是什么,它是如何发展的。本书非常巧妙地将严格的数学与教学实际、历史背景结合在一起,对主要结论常常给出各种可能的探索途径,以使读者理解基本概念、方法和推演过程了作者在本书中较早地引入了一些较深的内容,如在第一卷中介绍了拓扑空间的概念,在第二卷中介绍了Lebesgue理论的基本定理和Weierstrass椭圆函数的构造。
《天元基金影印数学丛书:分析2(影印版)》第一卷的内容包括集合与函数、离散变量的收敛性、连续变量的收敛性、幂函数、指数函数与三角函数;第二卷的内容包括Fourier级数和Fourier积分以及可以通过Fourier级数解释的Weierstrass的解析函数理论。
“天元基金影印数学丛书”主要包含国外反映近代数学发展的纯数学与应用数学方面的优秀书籍,天元基金邀请国内各个方向的知名数学家参与选题的工作,经专家遴选、推荐,由高等教育出版社影印出版。《分析》一书第一卷的内容包括集合与函数、离散变量的收敛性、连续变量的收敛性、幂函数、指数函数与三角函数;第二卷的内容包括Fourier级数和Fourier积分以及可以通过Fourier级数解释的Weierstrass的解析函数理论。《分析》可作为高年级本科生教材或参考书。
(美) 斯特里沙兹 (Strichartz,R.S.) , 著
(法) 戈德门特 (Godement,R.) , 著
(德) 阿莫恩 (Amann,H.) , 著
(美) R.S.斯特里查兹 (Robert S.Strichartz) , 著
(美) 雅培 (Abbott,S.) , 著
(德) 约斯特 (Jost,J.) , 著
(美) 阿波斯托尔 (Apostol,T.M.) , 著
(德) 阿莫恩 (Amann,H.) , 著
(德) 阿莫恩 (Amann,H.) , 著