出版社:科学出版社
年代:2008
定价:48.0
本书系统介绍了泛函分析的基础知识,共分为五章:度量空间、线性赋范空间与Banach空间、内积空间与Hilbert空间、Banach空间上的线性算子与基本定理,Hilbert空间上的线性算子。
Preface
ListofSymbols
Chapter1MetricSpaces
1.1Preliminaries
1.2DefinitionsandExamples
1.3ConvergenceinaMetricSpace
1.4SetsinaMetricSpace
1.5CompleteMetricSpaces
1.6ContinuousMappingsonMetricSpaces
1.7CompactMetricSpaces
1.8TheContractionMappingPrinciple
Chapter2NormedLinearSpaces.BanachSpaces
2.1ReviewofLinearSpaces
2.2NorminaLinearSpace
2.3ExamplesofNormedLinearSpaces
2.4FiniteDimensionalNormedLinearSpaces
2.5LinearSubspacesofNormedLinearSpaces
2.6QuotientSpaces
2.7TheWeierstrassApproximationTheorem
Chapter3InnerProductSpaces.HilbertSpaces
3.1InnerProducts
3.2Orthogonality
3.3OrthonormalSystems
3.4FourierSeries
Chapter4LinearOperators.FundamentalTheorems
4.1ContinuousLinearOperatorsandFunctionals
4.2SpacesofBoundedLinearOperatorsandDualSpaces
4.3TheBanach-SteinhausTheorem
4.4InversesofOperators.TheBanachTheorem
4.5TheHahn-BanachTheorem
4.6StrongandWeakConvergence
Chapter5LinearOperatorsonHilbertSpaces
5.1AdjointOperators.TheLax-MilgramTheorem
5.2SpectralTheoremforSelf-adjointCompactOperators
Bibliography
Index
Functionalanalysisisprimarilyconcernedwithinfinite-dimensionallinear(vector)spaces,mainlyfunctionspaceswhose"points"arefunctions,andmappingsbetweenthem,usuallycalledoperatorsor,functionalsiftherangeisonthereallineorinthecomplexplane.Itwasinventedanddevelopedinthelastyearsofthenineteenthcenturyandthefirstfewdecadesofthetwentiethcentury.Duringtheearlyperiodofitsdevelopment,theoriginalpurposeoffunctionalanalysiswastouseaframeworkwhichallowsthestudyofdifferentialandintegralequationstobeconsideredinthesameformulation(cf.[6]).Later,functionalanalysisdevelopedrapidlyasin-depthstudyandin-terconnectiononspectraltheoryofordinaryandpartialdifferentialequations,potentialtheory,Fourierexpansions,andappliedmathematicaltechniques,especially,ontheinfluenceofmathematicalphysicsandquantummechan-ics.