出版社:知识产权出版社
年代:2011
定价:46.0
本书作者在前人研究的基础上,对股指预测理论方法及模型构建做了如下几个方面的研究:(1)股指波动影响因素及股指预测模型特点研究。(2)股指波动统计类预测模型与创新类预测模型比较研究。(3)运用生物进化算法对神经网络进行优化研究。(4)基于数据挖掘的RBF AFSA股指预测模型和GA-BP股指预测模型及其实证。(5)基于知识挖掘的FPBP股指预测模型和REPTree RBF AFSA股指预测模型及其实证。
第1章 绪论
1.1 研究背景及意义
1.1.1 研究背景
1.1.2 研究意义
1.2 国内外研究现状
1.2.1 基于统计原理的传统型股票指数波动预测模型研究
1.2.2 基于非统计原理的创新型股票指数波动预测模型研究
1.2.3 神经网络的优化研究
1.2.4 数据挖掘与知识挖掘研究
1.2.5 国内外研究动态总结
1.3 论文研究内容
1.4 研究方法
1.5 论文创新点
第2章 股指预测的特点及影响因素分析
2.1 股指波动的特点
2.1.1 股票指数数据的噪声
2.1.2 股指波动的非线性特征
2.1.3 股指波动受投资者心理影响
2.1.4 股指波动具有政策性特征
2.2 影响股指波动的主耍因素
2.2.1 宏观经济因素
2.2.2 技术指标因素
2.2.3 心理因素
2.3 股指预测模型的功能与特点
2.3.1 具有并行处理大量非线性数据的功能
2.3.2 具有自主学习、自我调整的功能
2.3.3 具有多指标同时输入的功能
2.3.4 具有处理非量化文本因素的功能
2.4 本章小结
第3章 股指预测模型概述
3.1 基于统计原理的传统型股指预测模型
3.1.1 GARCH模型
3.1.2 SV模型
3.2 基于非统计原理的创新型股指预测模型
3.2.1 灰色CM(1,1)模型
3.2.2 BP神经网络
3.2.3 RBF神经网络
3.2.4 BP与RBF神经网络性能比较
3.2.5 支持向量机预测模型
3.3 本章小结
第4章 统计类预测模型与创新类预测模型比较
4.1 理论比较
4.1.1 建模的理论基础不同
4.1.2 对数据的要求不同
4.1.3 对数据的处理方法不同
4.1.4 模型结构的稳定性与适应性不同
4.1.5 预测精准度不同
4.1.6 预测难度与预测时间长度不同
4.2 实证比较
……
第5章 基于生物进化算法优化的神经网络股指预测模型与实证
第6章 基于数据挖掘的神经网络股指预测模型与实证
第7章 基于知识挖掘的神经网络股指预测模型与实证
作者对股指预测理论方法及模型构建做了以下的研究:1.股指波动影响因素及股指预测模型特点研究。2.股指波动统计类预测模型RB新类预测模型比较研究。3.基于生物进化算法的神经网络股指预测模型研究。4.基于数据挖掘的RBF+AFSA股指预测模型和GA-BP股指预测模型及其实证研究。5.基于知识挖掘的FPBP股指预测模型和REPTree+RBF+AFSA股指预测模型及其实证研究。
书籍详细信息 | |||
书名 | 股指波动预测模型的方法研究及应用站内查询相似图书 | ||
9787513006743 如需购买下载《股指波动预测模型的方法研究及应用》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 知识产权出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 46.0 | 语种 | 简体中文 |
尺寸 | 24 × 17 | 装帧 | 平装 |
页数 | 200 | 印数 | 800 |
股指波动预测模型的方法研究及应用是知识产权出版社于2011.7出版的中图分类号为 F830.91 的主题关于 股票指数-经济波动-经济预测-经济模型-研究 的书籍。