4已知复数z=m2-m+(m2-1)i(m∈R).若z是实数,则m的值为 ;若z是虚数,则m的取值范围是 ;若z是纯虚数,则m的值为 .
解析:复数z=m2-m+(m2-1)i的实部为m2-m,虚部为m2-1.
当m2-1=0,即m=±1时,z为实数;
当m2-1≠0,即m≠±1时,z为虚数;
当m2-m=0,且m2-1≠0,即m=0时,z为纯虚数.
答案:±1 m≠±1 0
5适合x-3i=(8x-y)i的实数x,y的值分别是 .
解析:由复数相等的充要条件,得{■(x=0"," @"-" 3=8x"-" y"," )┤解得x=0,y=3.
答案:0,3
6若log2(x2-3x-2)+ilog2(x2+2x+1)>1,则实数x的值为 .
解析:∵log2(x2-3x-2)+ilog2(x2+2x+1)>1,
∴{■(log_2 "(" x^2 "-" 3x"-" 2")" >1"," @log_2 "(" x^2+2x+1")" =0"." )┤∴x=-2.
答案:-2
7m分别为何实数时,复数
z=(m^2 "-" m"-" 6)/(m+3)+(m2-2m-15)i.
(1)为实数;
(2)为虚数;
(3)为纯虚数.
分析:根据复数的有关概念,将复数问题转化为实数问题求解.
解复数z的实部为 (m^2 "-" m"-" 6)/(m+3)=("(" m+2")(" m"-" 3")" )/(m+3).
虚部为m2-2m-15=(m+3)(m-5).
(1)要使z是实数,则必须有{■("(" m+3")(" m"-" 5")" =0"," @m+3≠0"," )┤
解得m=5,所以当m=5时,z为实数.
(2)要使z为虚数,则必须有{■("(" m+3")(" m"-" 5")" ≠0"," @m+3≠0"," )┤
所以当m≠5,且m≠-3时,z为虚数.