解析:根据动量守恒定律mv0=(M-m)v,得v=v0,选项D正确.
答案:D
4.如图,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m的救生员站在船尾,相对小船静止.若救生员以相对水面速率v水平向左跃入水中,则救生员跃出后小船的速率为( )
A.v0+v B.v0-v
C.v0+(v0+v) D.v0+(v0-v)
解析:取向右为正方向, 由动量守恒有(M+m)v0=-mv+Mv′,解之有v′=v0+(v0+v),故C正确.
答案:C
5.如图所示,一个质量为m的物块A与另一个质量为2m的物块B发生正碰,碰后B物块刚好能落入正前方的沙坑中.假如碰撞过程中无机械能损失,已知物块B与地面间的动摩擦因数为0.1,与沙坑的距离为0.5 m,g取10 m/s2,物块可视为质点.则A碰撞前瞬间的速度为( )
A.0.5 m/s B.1.0 m/s
C.1.5 m/s D.2.0 m/s
解析:A、B碰撞过程动量守恒,mv0=mv1+2mv2,机械能无损失,mv=mv+×2mv.碰撞后对B物体应用动能定理2μmgx=×2mv,解得v0=1.5 m/s,C项正确.
答案:C
6.A、B两球沿同一条直线运动,如图所示的x-t图象记录