A.[-2.1,-1] B.[1.9,2.3]
C.[4.1,5] D.[5,6.1]
解析由不变号零点的特征易判断该零点在区间[1.9,2.3]上.
答案B
6若关于x的方程2ax2-x-1=0在(0,1)内恰有一解,则a的取值范围是( )
A.(-∞,-1) B.(1,+∞)
C.(-1,1) D.[0,1)
解析令f(x)=2ax2-x-1.
当a=0时,不符合题意;
当a≠0时,则有f(0)·f(1)=-1×(2a-2)<0,
故a>1.
答案B
7若f(x)=(m-2)x2+mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m的取值范围是( )
A.("-" 1/2 "," 1/4) B.("-" 1/4 "," 1/2)
C.(1/4 "," 1/2) D.[1/4 "," 1/2]
解析由题意,得{■(f"(-" 1")·" f"(" 0")" <0"," @f"(" 1")·" f"(" 2")" <0"," )┤解得1/4 答案C 8已知函数f(x)与g(x)满足的关系为f(x)-g(x)=-x-3,根据所给数表,判断f(x)的一个零点所在的区间为( ) x
-1
0
1
2
3
g(x)
0.37
1
2.72
7.39
20.39 A.(-1,0) B.(0,1) C.(1,2) D.(2,3) 解析由已知得f(x)=g(x)-x-3, 且f(-1)=g(-1)+1-3<0, f(0)=g(0)-3=-2<0, f(1)=g(1)-1-3<0, f(2)=g(2)-2-3>0, f(3)>0. 由f(1)·f(2)<0,故零点在区间(1,2)内. 答案C