实现由感性到理性的飞跃。
(二)除法意义与各部分名称及乘除关系的探索认知
1.运用多媒体课件依次呈现展示或阅读例2(2)、(3),分别引导学生分析数量关系,学生自主列式计算解决问题;
2.设问引导,学生对比观察思考讨论:"与例2(1)相比,例2(2)、例2(3)题分别是已知什么数?要求什么数?、怎样算?除法是一种什么样的运算?"在除法中,各部分名称分别叫什么?"、"除法与乘法有什么关系?"
(引导学生认知:例2(1)题是已知几个相同的加数,求和--即已知两个因数,求积,用乘法;例2(2)、例2(3)题是已知两个因数的积与其中的一个因数,求另一个因数,用除法计算。)
归纳概括小结:除法意义及各部分名称(已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。在除法中,已知的积叫做被除数,其中的一个因数叫除数,另一个因数叫商。除法是乘法的逆运算或乘除法互为逆运算。)
(三)乘、除法各部分关系探索认知
通过引导观察、比较例2(1)、例2(2)、例2(3)题算式数量关系,思考讨论交流:"已知两个因数,如何求积?"、"已知积和其中的一个因数,怎样求另一个因数?"、"怎样求商、除数、被除数?"等问题,归纳概括,深化提升认知乘、除法各部分关系,实现由案例感性认知到理性认知的飞跃,理解认知构建新知识,并促进学生思维能力发展。
(四)有余数除法的各部分间关系
通过课件展示:"9÷7=?"、"38÷9=?"案例,引导学生思考讨论归纳有余数除法的各部分间关系
(五)例3:与0有关的加减法与乘除法运算
通过课件展示例3,设问:"一个数加上0或与0相乘,分别得多少?"、"0可以作除数吗?为什么?"等引导思考交流讨论认知。
(六)实践应用,深化巩固。
依据教学重难点知识,有针对性地设计"做一做"、"算一算"、"连一连"、"说一说"、"判断正误"(具体案例)等分层变式,拓展练习、实践应用,学生独立操作,实现从理论到实践的飞跃,深化理解,掌握新知,形成技能。