学习目标 1、 知识与技能: 了解导数概念的实际背景;理解函数在某点处导数以及在某个区间的导函数的概念;会用定义求瞬时速度和函数在某点处的导数。 2、 过程与方法: (1)通过实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景知道瞬时变化率就是导数。 (2)通过动手计算培养学生观察、分析、比较和归纳能力。 (3)通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法。 3、 情感、态度与价值观: 通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣.在从物理到数学,再用数学解决物理问题的过程中体验数学的应用价值。
学习重点:函数在某一点处附近的瞬时速度、瞬时变化率的概念及导数概念的形成。
学习难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵。