No.1 middle school ,my love !
练一练:用比较法证明:设a,b∈R,求证:a2+b2≥ab+a+b-1. 【解析】∵(a2+b2)-(ab+a+b-1) =a2+b2-ab-a-b+1 = 𝟏 𝟐 (2a2+2b2-2ab-2a-2b+2) = 𝟏 𝟐 [(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)] = 𝟏 𝟐 [(a-b)2+(a-1)2+(b-1)2]≥0, ∴a2+b2≥ab+a+b-1.