要点一 复数乘除法的运算
例1 计算:(1)(2+i)(2-i);(2)(1+2i)2.
解 (1)(2+i)(2-i)=4-i2=4-(-1)=5;
(2)(1+2i)2=1+4i+(2i)2=1+4i+4i2=-3+4i.
规律方法 (1)复数的乘法可以按照多项式的乘法法则进行,注意选用恰当的乘法公式进行简便运算,例如平方差公式、完全平方公式等.
(2)像3+4i和3-4i这样的两个复数叫做互为共轭复数,其形态特征为a+bi和a-bi,其数值特征为(a+bi)(a-bi)=a2+b2.
跟踪演练1 计算:(1)(1-2i)(3+4i)(-2+i);
(2)(3+4i)(3-4i);
(3)(1+i)2.
解 (1)(1-2i)(3+4i)(-2+i)=(11-2i)(-2+i)=
-20+15i;
(2)(3+4i)(3-4i)=32-(4i)2=9-(-16)=25;
(3)(1+i)2=1+2i+i2=2i.
例2 计算:(1)(1+2i)÷(3-4i);
(2)6+.
解 (1)(1+2i)÷(3-4i)====-+i;
(2)原式=6+
=i6+=-1+i.
规律方法 复数的除法先写成分式的形式,再把分母实数化(方法是分母与分子同时乘以分母的共轭复数,若分母是纯虚数,则只需同时乘以i).
跟踪演练2 计算:(1);(2).
解 (1)===1-i;