1664年秋,牛顿开始研究微积分问题,他反复阅读笛卡儿《几何学》,对笛卡儿求切线的“圆法”产生了浓厚的兴趣并试图寻找更好的方法,以前,面积总是被看成是无限小不可分量之和,牛顿则从确定面积的变化率入手,通过反微分计算面积.牛顿不仅揭示了面积计算与求切线的互逆关系,而且十分明确的把它作为一般规律揭示出来,从而奠定了微积分普遍算法的基础. 从1684年起,莱布尼兹发表了很多微积分论文.他的第一篇微分学文章《一种求极大值极小值和切线的新方法》是世界上最早公开发表的关于微分学的文献.在这篇论文中,他简明地解释了他的微分学,文中给出了微分的定义和基本的微分法则.