2018-2019学年人教B版选修2-2 2.2.2反证法 作业
2018-2019学年人教B版选修2-2 2.2.2反证法 作业第3页

(1)解由题意可知,1-a_(n+1)^2=2/3(1-a_n^2),

  令cn=1-a_n^2,则cn+1=2/3 cn,

  又c1=1-a_1^2=3/4,

  则数列{cn}是首项为c1=3/4,公比为 2/3 的等比数列,

  即cn=3/4×(2/3)^(n"-" 1),故1-a_n^2=3/4·(2/3)^(n"-" 1),

  ∴a_n^2=1-3/4·(2/3)^(n"-" 1).

  又a1=1/2>0,anan+1<0,

  故an=(-1)n-1√(1"-" 3/4 "·" (2/3)^(n"-" 1) )(n∈N+),

  bn=a_(n+1)^2-a_n^2

  =[1"-" 3/4 "·" (2/3)^n ]-[1"-" 3/4 "·" (2/3)^(n"-" 1) ]

  =1/4·(2/3)^(n"-" 1) (n∈N+).

(2)证明用反证法证明.

  假设数列{bn}中存在三项br,bs,bt(rbs>bt,则只可能有2bs=br+bt成立.

  即2×1/4·(2/3)^(s"-" 1)=〖1/4 "·" (2/3)〗^(r"-" 1)+1/4·(2/3)^(t"-" 1),两边同乘3t-121-r化简,得3t-r+2t-r=2·2s-r3t-s,因为r