求证:5AD=2BC.
证明在Rt△ABC中,设AC=k,则AB=2AC=2k,于是BC=√(AC^2+AB^2 )=√5k,
AC2=BC·CD=√5k·CD=k2,则CD=√5/5k.
∵AD2=CD·BD,BD=BC-CD=(4√5)/5k,
∴AD2=√5/5k×(4√5)/5k,∴AD=(2√5)/5k.
∴AD/BC=2/5,即5AD=2BC.