核心归纳 1.映射与函数 已知A,B是两个非空集合,在对应法则f的作用下,对于A中的任意一个元素x,在B中都有唯一的一个元素与之对应,这个对应叫做从A到B的映射,记作f:A→B.由定义可知在A中的任意一个元素在B中都能找到唯一的对应元素,而B中的元素在A中未必有对应元素.若f:A→B是从A到B的映射,且B中任一元素在A中有且只有一个对应元素,则这样的映射叫做从A到B的一一映射.函数是一个特殊的映射,其特殊点在于A,B都为非空数集,函数有三要素:定义域、值域、对应法则.两个函数只有当定义域和对应法则分别相同时,这两个函数才是同一函数.