§8 函数y=Asin(ωx+φ)的图像与性质
A组 基础巩固
1.函数y=2sin(2x+π/6)+1的最大值是( )
A.1 B.2 C.3 D.4
解析函数y=2sin(2x+π/6)+1的最大值为2+1=3.
答案C
2.已知函数f(x)=sin(ωx+π/3)(ω>0)的最小正周期为π,则f(π/6)=( )
A.-√3/2 B.√3/2 C.1/2 D.-1/2
解析由2π/ω=π,得ω=2,此时f(x)=sin(2x+π/3).
∴f(π/6)=sin(π/3+π/3)=√3/2.
答案B
3.函数y=3sin(π/4 "-" x)的一个单调递减区间为( )
A.["-" π/2 "," π/2] B.["-" π/4 "," 3π/4]
C.[3π/4 "," 7π/4] D.["-" 3π/4 "," π/4]
解析y=3sin(π/4 "-" x)=-3sin(x"-" π/4),当x∈["-" π/4 "," 3π/4]时,x-π/4∈["-" π/2 "," π/2],此时y=sin(x"-" π/4)在区间["-" π/4 "," 3π/4]上是增加的,从而y=-3sin(x"-" π/4)在区间["-" π/4 "," 3π/4]上是减少的,即单调递减区间是["-" π/4 "," 3π/4].
答案B
4.在同一平面直角坐标系中,函数y=cosx/2+3π/2(x∈[0,2π])的图像和直线y=1/2的交点个数是( )
A.0 B.1 C.2 D.4
解析作出函数y=cosx/2+3/2π,x∈[0,2π]的图像及y=1/2的图像可得,应选C.
答案C
5.
已知函数y=sin(ωx+φ)(ω>0",|" φ"|" <π/2)的部分图像如图所示,则( )
A.ω=1,φ=π/6
B.ω=1,φ=-π/6
C.ω=2,φ=π/6
D.ω=2,φ=-π/6
解析∵T=4×(7π/12 "-" π/3)=π,
∴ω=2π/T=2,由五点作图法知2×π/3+φ=π/2,φ=-π/6.
答案D
6.