2019-2020学年人教A版选修2-2 变化率与导数 课时作业
1.(2019·温州模拟)已知函数f(x)=x2+2x的图象在点A(x1,f(x1))与点B(x2,f(x2))(x1<x2<0)处的切线互相垂直,则x2-x1的最小值为( )
A. B.1
C. D.2
解析:选B.因为x1<x2<0,f(x)=x2+2x,
所以f′(x)=2x+2,
所以函数f(x)在点A,B处的切线的斜率分别为f′(x1),f′(x2),
因为函数f(x)的图象在点A,B处的切线互相垂直,
所以f′(x1)f′(x2)=-1.
所以(2x1+2)(2x2+2)=-1,
所以2x1+2<0,2x2+2>0,
所以x2-x1=[-(2x1+2)+(2x2+2)]≥=1,当且仅当-(2x1+2)=2x2+2=1,
即x1=-,x2=-时等号成立.
所以x2-x1的最小值为1.故选B.
2.已知f(x)=ax4+bcos x+7x-2.若f′(2 018)=6,则f′(-2 018)=( )
A.-6 B.-8
C.6 D.8
解析:选D.因为f′(x)=4ax3-bsin x+5.
所以f′(-x)=4a(-x)3-bsin(-x)+7
=-4ax3+bsin x+5.
所以f′(x)+f′(-x)=10.
又f′(2 018)=6,
所以f′(-2 018)=14-6=8,故选D.
3. 如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=( )