§2 微积分基本定理
课后训练案巩固提升
A组
1.∫_("-" π/2)^(π/2)▒ (1+cos x)dx等于( )
A.π B.2 C.π-2 D.π+2
解析:∫_("-" π/2)^(π/2)▒ (1+cos x)dx=(x+sin x)"|" _("-" π/2)^(π/2)=(π/2+sin π/2)-["-" π/2+sin("-" π/2)]
=π+2.
答案:D
2.若∫_1^a▒ (2x+1/x)dx=3+ln 2(a>1),则a的值为( )
A.2 B.3 C.4 D.6
解析:∵∫_1^a▒ (2x+1/x)dx=(x2+ln x)"|" _1^a=a2+ln a-1,
∴a2+ln a-1=3+ln 2,则a=2.
答案:A
3.若S1= ∫_1^2▒ x2dx,S2=∫_1^2▒ 1/xdx,S3=∫_1^2▒ exdx,则S1,S2,S3的大小关系是( )
A.S1 C.S2 解析:S1=∫_1^2▒ x2dx=1/3x3"|" _1^2=7/3,S2=∫_1^2▒ 1/xdx=ln 2,S3=∫_1^2▒ exdx=e2-e, ∵e2-e=e(e-1)>e>7/3>ln 2, ∴S2 答案:B 4.设f(x)={■(x^2 "," x"∈[" 0"," 1")," @2"-" x"," x"∈[" 1"," 2"]," )┤则∫_0^2▒ f(x)dx=( ) A.3/4 B.4/5 C.5/6 D.6/5 解析:∫_0^2▒ f(x)dx=∫_0^1▒ x2dx+∫_1^2▒ (2-x)dx=1/3x3"|" _0^1+(2x"-" 1/2 x^2 ) "|" _1^2=5/6. 答案:C 5.设函数f(x)=xm+ax的导函数为f'(x)=2x+1,则∫_1^2▒ f(-x)dx的值等于( ) A.5/6 B.1/2 C.2/3 D.1/6 解析:∵f'(x)=2x+1, ∴f(x)=x2+x, 于是∫_1^2▒ f(-x)dx=∫_1^2▒ (x2-x)dx =(1/3 x^3 "-" 1/2 x^2 ) "|" _1^2=5/6.