2.2 指数运算的性质
课后篇巩固提升
A组 基础巩固
1.设a>0,将a^2/√(a"·" ∛(a^2 )) 表示成分数指数幂,其结果是( )
A.a^(1/2) B.a^(5/6) C.a^(7/6) D.a^(3/2)
解析:由题意,a^2/√(a"·" ∛(a^2 )) =a^(2"-" 1/2 "-" 1/3)=a^(7/6).故选C.
答案:C
2.若a4+a-4=6,则a2+a-2的值等于( )
A.6 B.√6 C.2 D.2√2
解析:因为(a2+a-2)2=a4+a-4+2a2·a-2=a4+a-4+2=6+2=8,且a2+a-2>0,所以a2+a-2=2√2.
答案:D
3.计算1.5^("-" 1/3)×("-" 7/6)^0+80.25×∜2+(∛2×√3)6-√(("-" 2/3)^(2/3) )的结果为( )
A.110 B.89 C.97 D.121
解析:原式=(2/3)^(1/3)×1+2^(3/4)×2^(1/4)+(2^(1/3)×3^(1/2))6-(2/3)^(1/3)=(2/3)^(1/3)+2+22×33-(2/3)^(1/3)=2+4×27=110.
答案:A
4.化简(-m)2·√("-" 1/m)的结果为( )
A.√m B.-m√("-" m)
C.m√m D.m√("-" m)
解析:由√("-" 1/m)知-1/m>0,必有m<0.又当m<0时,√(m^2 )=|m|=-m,所以(-m)2·√("-" 1/m)=m2·√(("-" m)/m^2 )=m2·√("-" m)/("|" m"|" )=m2·√("-" m)/("-" m)=-m√("-" m).
答案:B
5.下列结论中,正确的个数是( )
①当a<0时,(a2")" ^(3/2)=a3;②√(n&a^n )=|a|(n>0);③函数y=(x-2")" ^(1/2)-(3x-7)0的定义域是(2,+∞);④若100a=5,10b=2,则2a+b=1.
A.0 B.1 C.2 D.3
解析:①错,∵(a2")" ^(3/2)>0,而a3<0;②错,当a<0,且n为奇数时不成立;③由{■(x"-" 2>0"," @3x"-" 7≠0"," )┤得x>2且x≠7/3,故③错;④由100a=5得102a=5,又10b=2,∴102a·10b=5×2=10,∴102a+b=10.∴2a+b=1.∴④正确.
答案:B
6.0.25×("-" 1/2)^("-" 4)-4÷20-(1/16)^("-" 1/2)= .
解析:原式=1/4×16-4-4=-4.
答案:-4
7.若10m=2,10n=3,则100^((2m"-" n)/4)的值等于 .
解析:100^((2m"-" n)/4)=(102")" ^((2m"-" n)/4)=10^((2m"-" n)/2)=10^(m"-" n/2)=(10^m)/(10^(n/2) )=(10^m)/("(" 10^n ")" ^(1/2) )=2/3^(1/2) =2/√3=(2√3)/3.
答案:(2√3)/3
8.8√3-3√12-6√(1/3)+∛(3√3) = .