二 极坐标系
课时过关·能力提升
基础巩固
1将点的极坐标(π,-2π)化为直角坐标为( )
A.(π,0) B.(π,2π)
C.(-π,0) D.(-2π,0)
解析因为x=πcos(-2π)=π,y=πsin(-2π)=0,
所以点的极坐标(π,-2π)化为直角坐标为(π,0).
答案A
2下列各点中与极坐标(5"," π/7)表示同一个点的是( )
A.(5"," 6π/7)B.(5"," 15π/7)
C.(5",-" 6π/7)D.(5",-" π/7)
答案B
3在平面直角坐标系xOy中,点P的直角坐标为(1,-√3).若以原点O为极点,x轴正半轴为极轴建立极坐标系,则点P的极坐标可以是( )
A.(2"," π/3)B.(2"," 4π/3)
C.(2",-" π/3)D.(2",-" 4π/3)
解析因为ρ=√(x^2+y^2 )=2,tanθ=-√3,且在平面直角坐标系中,点P位于第四象限,所以点P的极坐标可以是(2",-" π/3).故选C.
答案C
4在极坐标系中,已知A(2"," π/6),B(6",-" π/6),则OA,OB的夹角为( )
A.π/6 B.0C.π/3 D.5π/6
解析如图,OA,OB的夹角为 π/3.