2019-2020学年北师大版选修1-1 最大值、最小值问题 课时作业
知识点一 函数最值的概念
1.设f(x)是[a,b]上的连续函数,且在(a,b)内可导,则下列结论中正确的是( )
A.f(x)的极值点一定是最值点
B.f(x)的最值点一定是极值点
C.f(x)在此区间上可能没有极值点
D.f(x)在此区间上可能没有最值点
答案 C
解析 根据函数的极值与最值的概念判断知选项A,B,D都不正确,只有选项C正确.
2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x)( )
A.等于0 B.大于0
C.小于0 D.以上都有可能
答案 A
解析 由题意,知在区间[a,b]上,有m≤f(x)≤M,当M=m时,今M=m=C,则必有f(x)=C,∴f′(x)=C′=0.故选A.
知识点二 求函数的最值
3.函数f(x)=x3-3x(|x|<1)( )
A.有最大值,但无最小值 B.有最大值,也有最小值
C.无最大值,但有最小值 D.既无最大值,也无最小值
答案 D
解析 f′(x)=3x2-3=3(x+1)(x-1),当x∈(-1,1)时,f′(x)<0,所以f(x)在(-1,1)上是单调递减函数,无最大值和最小值,故选D.
4.函数y=x-sinx,x∈的最大值是( )
A.π-1 B.-1
C.π D.π+1
答案 C
解析 因为y′=1-cosx,当x∈时,y′>0,则函数y=x-sinx在区间上为增函数,所以y的最大值为ymax=π-sinπ=π,故选C.
知识点三 含参数的函数的最值问题
5.若函数y=x3+x2+m在[-2,1]上的最大值为,则m等于( )
A.0 B.1
C.2 D.
答案 C