课时作业22 圆的标准方程
(限时:10分钟)
1.点P(a,5)与圆x2+y2=24的位置关系是( )
A.点在圆上 B.点在圆内
C.点在圆外 D.不确定
解析:∵a2+52=a2+25>24,∴点在圆外.
答案:C
2.以点(-3,4)为圆心,且与x轴相切的圆的标准方程为( )
A.(x-3)2+(y+4)2=16
B.(x-3)2+(y+4)2=9
C.(x+3)2+(y-4)2=16
D.(x+3)2+(y-4)2=9
解析:圆心到圆的切线的距离等于圆的半径,故r=4.
答案:C
3.已知圆的方程为(x+1)2+(y-2)2=5,则圆心到直线2x+y-1=0的距离为________.
解析:由圆的标准方程可知,圆心为(-1,2),再根据点到直线的距离公式得d==.
答案:
4.圆心在y轴上,半径为5,且过点(3,-4)的圆的标准方程为________.
解析:由题意,设所求的圆的方程为x2+(y-b)2=25,
∵点(3,-4)在圆上,∴32+(-4-b)2=25,
解得b=0或-8.
故圆的方程为x2+y2=25或x2+(y+8)2=25.
答案:x2+y2=25或x2+(y+8)2=25
5.已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线l:x-y+1=0上,求圆心为C的圆的标准方程.