一、选择题
1.用反证法证明命题"设a,b为实数,则方程x2+ax+b=0至少有一个实根"时,要做的假设是( )
A.方程x2+ax+b=0没有实根
B.方程x2+ax+b=0至多有一个实根
C.方程x2+ax+b=0至多有两个实根
D.方程x2+ax+b=0恰好有两个实根
解析:"方程x2+ax+b=0至少有一个实根"的反面是"方程x2+ax+b=0没有实根."
答案:A
2.用反证法证明命题"若直线AB,CD是异面直线,则直线AC,BD也是异面直线"的过程归纳为以下三个步骤:
①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.
则正确的顺序为( )
A.①②③ B.③①②
C.①③② D.②③①
解析:结合反证法的证明步骤可知,其正确步骤为③①②.
答案:B
3.用反证法证明在"△ABC中至多有一个直角或钝角",第一步应假设( )
A.三角形中至少有一个直角或钝角
B.三角形中至少有两个直角或钝角
C.三角形中没有直角或钝角
D.三角形中三个角都是直角或钝角
答案:B
4.用反证法证明"三角形中至少有一个内角不小于60°",应先假设这个三角形中( )
A.有一个内角小于60°
B.每一个内角都小于60°
C.有一个内角大于60°
D.每一个内角都大于60°
答案:B
5.设实数a、b、c满足a+b+c=1,则a,b,c中至少有一个数不小于( )
A.0 B.
C. D.1