2.1.2 椭圆的简单几何性质(二)
课时过关·能力提升
基础巩固
1.椭圆 x^2/25+y^2/4=1的两个焦点为F1,F2,过点F2的直线交椭圆于A,B两点.若|AB|=8,则|AF1|+|BF1|的值为( )
A.10 B.12
C.16 D.18
解析:∵|AB|+|AF1|+|BF1|=4a,
∴|AF1|+|BF1|=4×5-8=12.
答案:B
2.已知直线l:x+y-3=0,椭圆 x^2/4+y2=1,则直线与椭圆的位置关系是( )
A.相交 B.相切
C.相离 D.相切或相交
解析:将y=3-x代入 x^2/4+y2=1,得5x2-24x+32=0.
Δ=(-24)2-4×5×32=576-640=-64<0,方程无解.故直线l与椭圆相离.
答案:C
3.直线y=x+1被椭圆 x^2/4+y^2/2=1所截得的弦的中点坐标是( )
A.(2/3 "," 5/3)B.(4/3 "," 7/3)
C.("-" 2/3 "," 1/3)D.("-" 13/2 "," 17/2)
解析:设A(x1,y1),B(x2,y2)为直线与椭圆的交点,中点M(x0,y0),
由{■(y=x+1"," @x^2/4+y^2/2=1"," )┤得3x2+4x-2=0.
x0=(x_1+x_2)/2=1/2×("-" 4/3)=-2/3,
y0=x0+1=1/3,