2.5 直线与圆锥曲线
课时过关·能力提升
1.若椭圆 x^2/36+y^2/9=1的弦被点(4,2)平分,则此弦所在直线的斜率为( )
A.2 B.-2 C. 1/3 D.-1/2
解析:设弦两端点A(x1,y1),B(x2,y2),则x1+x2=8,y1+y2=4,
又{■((x_1^2)/36+(y_1^2)/9=1",①" @(x_2^2)/36+(y_2^2)/9=1".②" )┤
①-②得
("(" x_1+x_2 ")(" x_1 "-" x_2 ")" )/36+("(" y_1+y_2 ")(" y_1 "-" y_2 ")" )/9=0,
即 (8"(" x_1 "-" x_2 ")" )/36+(4"(" y_1 "-" y_2 ")" )/9=0,
所以所求直线的斜率为 (y_1 "-" y_2)/(x_1 "-" x_2 )=-1/2.
答案:D
2.已知椭圆x2+2y2=4,则以(1,1)为中点的弦的长度为0( )
A.3√2 B.2√3
C.√30/3 D.3/2 √6
解析:依题设弦的端点为A(x1,y1),B(x2,y2),
则x1+x2=2,y1+y2=2,
又x_1^2+2y_1^2=4,x_2^2+2y_2^2=4,
所以x_1^2-x_2^2=-2(y_1^2-y_2^2),
此弦的斜率k=(y_1 "-" y_2)/(x_1 "-" x_2 )=-(x_1+x_2)/(2"(" y_1+y_2 ")" )=-1/2,
所以此弦所在的直线方程为y-1=-1/2(x-1),
即y=-1/2 x+3/2.