4.2.3 直线与圆的方程的应用
课后篇巩固探究
A组 基础巩固
1.直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若|MN|≥2√3,则k的取值范围是( )
A.["-" 3/4 "," 0]
B.("-∞,-" 3/4]∪[0,+∞)
C.["-" √3/3 "," √3/3]
D.["-" 2/3 "," 0]
解析圆心的坐标为(3,2),且圆与x轴相切.
当|MN|=2√3时,弦心距最大,
由点到直线的距离公式得("|" 3k"-" 2+3"|" )/√(1+k^2 )≤1,
解得k∈["-" 3/4 "," 0].
答案A
2.直线√3x+y-2√3=0截圆x2+y2=4得到的劣弧所对的圆心角为( )
A.30° B.45°
C.60° D.90°
解析∵圆心到直线的距离为d=(2√3)/2=√3,圆的半径为2,
∴劣弧所对的圆心角为60°.
答案C
3.已知圆O:x2+y2=4与圆C:x2+y2-6x+6y+14=0关于直线l对称,则直线l的方程是( )
A.x-2y+1=0 B.2x-y-1=0
C.x-y+3=0 D.x-y-3=0
解析圆x2+y2=4的圆心是O(0,0),圆x2+y2-6x+6y+14=0的圆心是C(3,-3),所以直线l是OC的垂直平分线.又直线OC的斜率kOC=-1,所以直线l的斜率k=1,OC的中点坐标是(3/2 ",-" 3/2),所以直线l的方程是y+3/2=x-3/2,即x-y-3=0.