2019-2020学年北师大版选修2-2课时分层作业9 计算导数 作业(1)
2019-2020学年北师大版选修2-2课时分层作业9 计算导数 作业(1)第1页

§3 计算导数

课后训练案巩固提升

A组

1.函数y=lg x在x=1处的瞬时变化率为(  )

                

A.0 B.1

C.ln 10 D.1/ln10

解析:∵y'=1/xln10,∴函数在x=1处的瞬时变化率为1/(1×ln10)=1/ln10.

答案:D

2.若曲线y=f(x)在点(x0,f(x0))处的切线方程为3x-y+1=0,则(  )

A.f'(x0)<0 B.f'(x0)>0

C.f'(x0)=0 D.f'(x0)不存在

解析:由导数的几何意义可知曲线在点(x0,f(x0))处的导数等于曲线在该点处的切线斜率,所以f'(x0)=3.故选B.

答案:B

3.已知f(x)=x2,g(x)=x3,且f'(x)

A.x<0 B.x>2/3

C.02/3

解析:∵f(x)=x2,g(x)=x3,且f'(x)

  ∴2x<3x2.∴3x2-2x>0.

  ∴x(3x-2)>0.∴x<0或x>2/3.

答案:D

4.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为(  )

A.4x-y-3=0 B.x+4y-5=0

C.4x-y+3=0 D.x+4y+3=0

解析:∵切线l与直线x+4y-8=0垂直,

  ∴切线l的斜率为4.又y'=4x3,

  由切线的斜率为4,得4x3=4,即x=1,切点坐标为(1,1).

  ∴切线方程为y-1=4(x-1),即4x-y-3=0.

答案:A

5.已知偶函数f(x)在R上可导,且f'(1)=1,f(x+2)=f(x-2),则曲线y=f(x)在x=-5处切线的斜率为0(  )

A.2 B.-2 C.1 D.-1

解析:由f(x+2)=f(x-2),得f(x+4)=f(x),可知函数f(x)的周期为4,又函数f(x)为偶函数,所以f(-5)=f(5)=f(1),所以曲线y=f(x)在x=-5处切线的斜率k=f'(-5)=-f'(1)=-1.

答案:D