课时达标训练(八)椭圆的简单几何性质
[即时达标对点练]
题组1 由椭圆的标准方程研究几何性质
1.椭圆25x2+9y2=225的长轴长、短轴长、离心率依次是 ( )
A.5、3、0.8 B.10、6、0.8
C.5、3、0.6 D.10、6、0.6
2.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( )
A.(±13,0) B.(0,±10)
C.(0,±13) D.(0,±)
3.已知椭圆+=1与椭圆+=1有相同的长轴,椭圆+=1的短轴长与椭圆+=1的短轴长相等,则( )
A.a2=25,b2=16
B.a2=9,b2=25
C.a2=25,b2=9或a2=9,b2=25
D.a2=25,b2=9
题组2 由椭圆的几何性质求标准方程
4.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴3等分,则此椭圆的方程是( )
A.+=1 B.+=1
C.+=1 D.+=1
5.已知椭圆+=1,长轴在y轴上.若焦距为4,则m等于( )
A.4 B.5 C.7 D.8
6.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之和为12.则椭圆G的方程为_______________________.
题组3 椭圆的离心率
7.椭圆x2+4y2=4的离心率为( )
A. B. C. D.