一、选择题
1.在下列关系中错误的个数是( )
①1∈{0,1,2};
②{1}∈{0,1,2};
③{0,1,2}⊆{0,1,2};
④{0,1,2}={2,0,1};
⑤{0,1}⊆{(0,1)}.
A.1 B.2 C.3 D.4
考点 集合的包含关系
题点 集合包含关系的判定
答案 B
解析 ①正确;因为集合{1}是集合{0,1,2}的真子集,而不能用∈来表示,所以②错误;③正确,因为任何集合都是它本身的子集;④正确,因为集合元素具有无序性;因为集合{0,1}表示数集,它有两个元素,而集合{(0,1)}表示点集,它只有一个元素,所以⑤错误,所以错误的个数是2.故选B.
2.若=,则( )
A.b=-3,c=2 B.b=3,c=-2
C.b=-2,c=3 D.b=2,c=-3
考点 集合相等的概念
题点 由集合相等求参数的值
答案 A
解析 依题意知,1,2是方程x2+bx+c=0的两根,
由根与系数的关系得,b=-(x1+x2)=-3,c=x1x2=2.
3.已知集合U,S,T,F的关系如图所示,则下列关系正确的是( )
①S∈U;②F⊆T;③S⊆T;④S⊆F;⑤S∈F;⑥F⊆U.
A.①③ B.②③ C.③④ D.③⑥
考点 集合的包含关系