2018-2019学年人教A版选修2-1 2.4.1抛物线及其标准方程 课时作业
2018-2019学年人教A版选修2-1    2.4.1抛物线及其标准方程    课时作业第1页

第二章 2.4 2.4.1 

  A级 基础巩固

  一、选择题

  1.在平面直角坐标系内,到点(1,1)和直线x+2y=3的距离相等的点的轨迹是( A )

  A.直线        B.抛物线

  C.圆 D.双曲线

  [解析] ∵点(1,1)在直线x+2y=3上,故所求点的轨迹是过点(1,1)且与直线x+2y=3垂直的直线.

  2.抛物线y2=4x的焦点到其准线的距离是( C )

  A.4    B.3   

  C.2    D.1

  [解析] ∵抛物线的方程为y2=4x,

  ∴2p=4,p=2.由p的几何意义可知,焦点到其准线的距离是p=2.故选C.

  3.抛物线x2=4y关于直线x+y=0的对称曲线的焦点坐标为( B )

  A.(1,0) B.(-1,0)

  C.(,0) D.(0,-)

  [解析] 由题意可得:抛物线x2=4y关于直线x+y=0对称的抛物线方程为:(-y)2=4(-x),

  

  即y2=-4x,其中p=2,

  所以抛物线的焦点坐标为(-1,0).

  故选B.

4.过点A(3,0)且与y轴相切的圆的圆心的轨迹为( D )