2.1.2离散型随机变量的分布列
一、单选题
1.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时已拨的次数为ξ,则随机变量ξ的所有可能取值的种数为( )
A.20 B.24
C.4 D.18
【答案】B
【解析】由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有 (种).
故选B.
点睛:本题是一个随机变量可能取值的问题,解答本题的关键是弄清后四位数字的组成方式.
2.对一批产品逐个进行检测,第一次检测到次品前已检测的产品个数为ξ,则ξ=k表示的试验结果为( )
A.第k-1次检测到正品,而第k次检测到次品
B.第k次检测到正品,而第k+1次检测到次品
C.前k-1次检测到正品,而第k次检测到次品
D.前k次检测到正品,而第k+1次检测到次品
【答案】D
【解析】由题意表示第一次检测到次品前已检测的产品个数为,因此前次检测到的都是正品,第次检测的是一件次品.
故选D.
3.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取得黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示"放回5个球"的事件为( )
A.X=4
B.X=5
C.X=6
D.X≤4
【答案】C
【解析】第一次取到黑球,则放回1个球,第二次取到黑球,则放回2个球......共放