课下层级训练(四十四) 圆的方程
[A级 基础强化训练]
1.(2019·山东聊城检测)经过点(1,0),且圆心是两直线x=1与x+y=2的交点的圆的方程为( )
A.(x-1)2+y2=1 B.(x-1)2+(y-1)2=1
C.x2+(y-1)2=1 D.(x-1)2+(y-1)2=2
【答案】B [由得
即所求圆的圆心坐标为(1,1),
又由该圆过点(1,0),得其半径为1,
故圆的方程为(x-1)2+(y-1)2=1.]
2.已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则取最大面积时,该圆的圆心的坐标为( )
A.(-1,1) B.(-1,0)
C.(1,-1) D.(0,-1)
【答案】D [由x2+y2+kx+2y+k2=0知所表示圆的半径r==,
当k=0时,rmax==1,
此时圆的方程为x2+y2+2y=0,
即x2+(y+1)2=1,所以圆心为(0,-1).]
3.(2016·全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )
A.- B.-
C. D.2
【答案】A [圆x2+y2-2x-8y+13=0,得圆心坐标为(1,4),所以圆心到直线ax+y-1=0的距离d==1,解得a=-.]
4.圆心在y轴上,且过点(3,1)的圆与x轴相切,则该圆的方程为( )
A.x2+y2+10y=0 B.x2+y2-10y=0
C.x2+y2+10x=0 D.x2+y2-10x=0
【答案】B [根据题意,设圆心坐标为(0,r),半径为r,则32+(r-1)2=r2,解得r=5,可得圆的方程为x2+y2-10y=0.]
5.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( )
A.6 B.4
C.3 D.2
【答案】B [如图所示,圆心M(3,-1)与直线x=-3的最短距离为|MQ|=3-(-3)=6,