§3 弧度制
A组 基础巩固
1.若将分针拨慢10 min,则分针转过的弧度数是( )
A.π/3 B.-π/3 C.π/5 D.-π/5
解析因为分针每分钟转过的角度为-6°,所以将分针拨慢10 min,则分针转过的弧度数为π/3.
答案A
2.下列转化结果错误的是( )
A.60°化成弧度是π/3
B.-10π/3化成度是-600°
C.-150°化成弧度是-7π/6
D.π/12化成度是15°
解析-150°=-150×π/180 rad=-5π/6 rad,故C项错误.
答案C
3.-29π/12的终边所在的象限是( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析-29π/12=-2π-5π/12.因为-5π/12是第四象限角,所以-29π/12的终边所在的象限是第四象限.
答案D
4.在半径为3 cm的圆中,π/7的圆心角所对的弧长为0( )
A.3π/7 cm B.π/21 cm
C.3/7 cm D.9π/7 cm
解析由题意可得圆心角α=π/7,半径r=3 cm,
∴弧长l=αr=π/7×3=3π/7(cm).
故选A.
答案A
5.已知扇形的周长为12 cm,面积为8 cm2,则扇形圆心角的弧度数为( )
A.1
B.4
C.1或4
D.2或4
解析设扇形的弧长为l cm,半径为r cm,因为扇形的周长为12 cm,面积为8 cm2,
所以{■(l+2r=12"," @1/2 lr=8"," )┤
解得{■(r=2"," @l=8)┤或{■(r=4"," @l=4"," )┤
所以α=1或4.
答案C
6.已知4π<α<6π,且角α与角-2π/3的终边相同,则α= .
解析∵α=2kπ-2π/3(k∈Z),且4π<α<6π,
∴令k=3,
得α=6π-2π/3=16π/3.