3.1.3 导数的几何意义
课时过关·能力提升
基础巩固
1.若曲线y=f(x)在点(x0,f(x0))处的切线方程为3x+y+5=0,则( )
A.f'(x0)>0 B.f'(x0)<0
C.f'(x)=0 D.f'(x0)不存在
答案:B
2.已知曲线y=1/2 x2-2上一点P(1",-" 3/2),则过点P的切线的倾斜角为( )
A.30° B.45° C.135° D.165°
解析:∵y=1/2 x2-2,
∴y'=lim┬(Δx"→" 0) ( 1/2 "(" x+Δx")" ^2 "-" 2"-" (1/2 x^2 "-" 2))/Δx=(lim)┬(Δx"→" 0) ( 1/2 "(" Δx")" ^2+x"·" Δx)/Δx=lim┬(Δx"→" 0) (x+1/2 Δx)=x.
∴y'|x=1=1.∴点P(1",-" 3/2)处切线的斜率为1,则切线的倾斜角为45°.
答案:B
3.曲线y=x3-2x+1在点(1,0)处的切线方程为( )
A.y=x-1 B.y=-x+1
C.y=2x-2 D.y=-2x+2
解析:y'|x=1
=lim┬(Δx"→" 0) ("(" 1+Δx")" ^3 "-" 2"(" 1+Δx")" +1"-(" 1^3 "-" 2×1+1")" )/Δx
=1,
因此曲线在点(1,0)处的切线方程为y=x-1.
答案:A
4.若曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a等于( )
A.1 B. 1/2
C.-1/2 D.-1