课时跟踪检测(八) 离散型随机变量及其分布列
一、选择题
1.下列不是离散型随机变量的是( )
①某机场候车室中一天的游客量为X;
②某寻呼台一天内收到的寻呼次数为X;
③某水文站观察到一天中长江的水位为X;
④某立交桥一天经过的车辆数为X.
A.①中的X B.②中的X
C.③中的X D.④中的X
解析:选C ①②④中随机变量X可能取的值,我们都可以按一定次序一一列出,因此,它们都是离散型随机变量;③中的X可以取某一区间内的一切值,无法按一定次序一一列出,故其不是离散型随机变量.
2.抛掷两枚骰子一次,X为第一枚骰子掷出的点数与第二枚掷出的点数之差,则X的所有可能的取值为( )
A.0≤X≤5,X∈N
B.-5≤X≤0,X∈Z
C.1≤X≤6,X∈N
D.-5≤X≤5,X∈Z
解析:选D 两次掷出点数均可取1~6所有整数,
∴X∈[-5,5],X∈Z.
3.若随机变量X的分布列为P(X=i)=(i=1,2,3),则P(X=2)等于( )
A. B.
C. D.
解析:选D 由分布列的性质,可得++=1,解得a=3,则P(X=2)==.
4.某10人组成兴趣小组,其中有5名团员.从这10人中任选4人参加某项活动,用X表示4人中的团员人数,则P(X=3)等于( )
A. B.
C. D.
解析:选D P(X=3)==