1.(2018·贵阳监测考试)已知椭圆C:+=1(a>b>0)的离心率为,且椭圆C上的点到一个焦点的距离的最小值为-.
(1)求椭圆C的方程;
(2)已知过点T(0,2)的直线l与椭圆C交于A,B两点,若在x轴上存在一点E,使∠AEB=90°,求直线l的斜率k的取值范围.
解:(1)设椭圆的半焦距长为c,
则由题设有
解得a=,c=,
∴b2=1,
故椭圆C的方程为+x2=1.
(2)由已知可得,直线l的方程为y=kx+2,以AB为直径的圆与x轴有公共点.
设A(x1,y1),B(x2,y2),AB中点为M(x0,y0),
将直线l:y=kx+2代入+x2=1,
得(3+k2)x2+4kx+1=0,
则Δ=12k2-12>0,
x1+x2=,x1x2=.
∴x0==,y0=kx0+2=,
|AB|=·
=·=,
∴
解得k4≥13,
即k≥或k≤-.
故所求斜率的取值范围为(-∞,-]∪[,+∞).
2.(2018·西安质检)如图所示,已知椭圆C的中心在原点,焦点在x轴上,离心率