人教版八年级上册数学《全册教学设计教案》免费下载15
人教版八年级上册数学《全册教学设计教案》免费下载15第1页

 新版人教版八年级数学上册全册教案

课题:§12.3.1.2 等腰三角形(二) 新授课

教学目标

(一)〔知识与技能

探索等腰三角形的判定定理.

(二)〔过程与方法〕

探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念.

(三)〔情感、态度与价值观〕

通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.

教学重点

等腰三角形的判定定理及其应用.

教学难点

探索等腰三角形的判定定理.

教学方法

讲练结合法.

教具准备

三角板

教学过程

Ⅰ.提出问题,创设情境

[师]上节课我们学习了等腰三角形的性质,现在大家来回忆一下,等腰三角形有些什么性质呢?

[生甲]等腰三角形的两底角相等.

[生乙]等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.

[师]同学们回答得很好,我们已经知道了等腰三角形的性质,那么满足了什么样的条件就能说一个三角形是等腰三角形呢?这就是我们这节课要研究的问题.

Ⅱ.导入新课

[师]同学们看下面的问题并讨论:(书P51)

  思考:如图,位于在海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B.如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?

  

在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?

[生甲]应该能同时赶到出事地点.因为两艘救生船的速度相同,同时出发,在相同的时间内走过的路程应该相同,也就是OA=OB,所以两船能同时赶到出事地点.

[生乙]我认为能同时赶到O点的位置很重要,也就是∠A如果不等于∠B,那么同时以同样的速度就不一定能同时赶到出事地点.

[师]现在我们把这个问题一般化,在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?

[生丙]我想它们所对的边应该相等.

[师]为什么它们所对的边相等呢?同学们思考一下,给出一个简单的证明.