课时跟踪检测(二) 余弦定理
层级一 学业水平达标
1.在△ABC中,已知a=2,b=3,C=120°,则S△ABC=( )
A. B.
C. D.3
解析:选B S△ABC=absin C=×2×3×=.
2.在△ABC中,已知(a+b+c)(b+c-a)=3bc,则角A等于( )
A.30° B.60°
C.120° D.150°
解析:选B ∵(b+c)2-a2=b2+c2+2bc-a2=3bc,
∴b2+c2-a2=bc,
∴cos A==,∴A=60°.
3.在△ABC中,若a=8,b=7,cos C=,则最大角的余弦值是( )
A.- B.-
C.- D.-
解析:选C 由余弦定理,得
c2=a2+b2-2abcos C=82+72-2×8×7×=9,
所以c=3,故a最大,
所以最大角的余弦值为
cos A===-.
4.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab的值为( )
A. B.8-4
C.1 D.
解析:选A 由(a+b)2-c2=4,得a2+b2-c2+2ab=4,由余弦定理得a2+b2-c2=2abcos C=2abcos 60°=ab,则ab+2ab=4,∴ab=.