四 柱坐标系与球坐标系简介
课时过关·能力提升
基础巩固
1已知点P的柱坐标为(16"," π/3 "," 5),则其直角坐标为( )
A.(5,8,8√3)B.(8,8√3,5)
C.(8√3,8,5)D.(4,8√3,5)
解析设点P的直角坐标为(x,y,z).∵ρ=16,θ=π/3,z=5,∴x=ρcosθ=8,y=ρsinθ=8√3,z=5,
故点P的直角坐标是(8,8√3,5).
答案B
2已知点P的柱坐标为(2"," π/4 "," 3),若在空间直角坐标系中,点P在xOy平面上的射
影为Q,则点Q的柱坐标为0( )
A.(2,0,3)
B.(2"," π/4 "," 0)
C.(√2 "," π/4 "," 3)
D.(√2 "," π/4 "," 0)
答案B
3在球坐标系中,方程r=2(0≤φ≤π/2 "," 0≤θ<2π)表示( )
A.圆 B.半圆
C.球面 D.半球面
解析由空间点的球坐标的定义可知,
方程r=2(0≤φ≤π/2 "," 0≤θ<2π)表示半球面.
答案D
4已知点M的柱坐标为(4"," 7π/6 "," 1),则它的直角坐标为 .
解析设点M的直角坐标为(x,y,z).
∵ρ=4,θ=7π/6,z=1,
∴x=ρcosθ=4cos 7π/6=-2√3,