1.(2017·高考全国卷Ⅲ)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零点,则a=( )
A.- B.
C. D.1
解析:选C.由f(x)=x2-2x+a(ex-1+e-x+1),得f(2-x)=(2-x)2-2(2-x)+a[e2-x-1+e-(2-x)+1]=x2-4x+4-4+2x+a(e1-x+ex-1)=x2-2x+a(ex-1+e-x+1),所以f(2-x)=f(x),即x=1为f(x)图象的对称轴.由题意,f(x)有唯一零点,所以f(x)的零点只能为x=1,即f(1)=12-2×1+a(e1-1+e-1+1)=0,解得a=.故选C.
2.已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )
A.(2,+∞) B.(-∞,-2)
C.(1,+∞) D.(-∞,-1)
解析:选B.f′(x)=3ax2-6x,
当a=3时,f′(x)=9x2-6x=3x(3x-2),
则当x∈(-∞,0)时,f′(x)>0;x∈时,f′(x)<0;x∈时,f′(x)>0,注意f(0)=1,f=>0,则f(x)的大致图象如图(1)所示:
不符合题意,排除A、C.
当a=-时,f′(x)=-4x2-6x=-2x(2x+3),则当x∈时,f′(x)<0,x∈时,f′(x)>0,x∈(0,+∞)时,f′(x)<0,注意f(0)=1,f=-,则f(x)的大致图象如图(2)所示.
不符合题意,排除D.